Lots 1006 and 1007 Baldivis Road, Baldivis Engineering Services Report

Project No: 15-292

Table of Contents

1	Introduction		
2	Site D	Description	3
	2.1	Locality	3
	2.2	Topography	3
	2.3	Soils and Groundwater	
3	Earth	works Strategy and Retaining Walls	4
4	Storm	nwater Drainage	4
5		r Reticulation	
6		r Reticulation	
7) Gas	
8		rical Reticulation	
9	Communications		
10	Major	Pipelines	5
11	Concl	lusion	5

Appendix One: CLE Concept Plan

Appendix Two: Conceptual Levels Plan

Appendix Three: Sewer Catchment Plan

Appendix Four: Water Concept Plan

Appendix Five: Existing ATCO Gas Services

Appendix Six: Galt Geotechnics Investigation

Revision	Description	Author	Date
0	Initial Issue	Ryan Brook	15 January 2016
1	Updated Water Reticulation and Pipelines	Ryan Brook	29 February 2016
2	Earthworks Appendix Updated	Ryan Brook	11 March 2016
3	Updated Planning Layout	Mark Riddell	27 August 2018
4	Updated Planning Layout	Mark Riddell	15 November 2018

1 Introduction

At the request of the KEC Nominees, this Engineering Servicing Report has been prepared in support of structure planning on Lots 503, 1006, 1007 and 1272 Baldivis Road and Lot 1 Serpentine Road, Baldivis.

Information provided in the report presents a servicing strategy based on preliminary lot layout provided by CLE Town Planners. This plan can be found in Appendix One.

Pritchard Francis is currently involved with the detailed engineering design of the Brightwood Estate development on the western side of Baldivis Road also for ABN Baldivis Joint Venture. As such, Pritchard Francis is well versed in servicing requirements for the area and has been liaising with service authorities in this regard.

2 Site Description

2.1 Locality

The 27ha site is located within the City of Rockingham and is bound by Kwinana Freeway to the east, Sixty Eight Road to the south, Baldivis Road and a tramway reserve to the west and Serpentine Road to the north. The subject site is located approximately 15km south-east of Rockingham.

2.2 Topography

The site currently consists of paddocks and multiple homesteads in the western half, with sparse vegetation throughout. The site elevation decreases from approximately RL 5.8m AHD at Baldivis Road in the west to a low point of RL 2.9m AHD at the south east corner. There is a Water Corporation open drain present in the eastern portion of the site running north-south that is approximately 0.7m below surrounding ground levels with a low point at the south east corner of the site at RL 2.2m AHD.

2.3 Soils and Groundwater

Galt Geotechnics conducted an investigation on the site in November 2015. The soil in the western portion of the site was found to consist of fine to coarse grained sand overlying clayey sand. The soil to the eastern portion of the site consisted of organic clay overlying high plasticity clay.

The Department of Environment and Conservation's Acid Sulfate Soil (ASS) risk mapping indicates that the site contains soils that have moderate to low risk of containing ASS at depths of >3m. Field testing conducted by Galt Geotechnics, confirmed that there are actual acid sulphate soils in the eastern portion of the site (organic clay material), however the sandy western portion of the site did not return any positive results.

The Perth Groundwater Atlas historical maximum contours (1997) do not extend to the site, however May 2004 contours indicate a groundwater level of between RL 2m and RL 3m AHD through the site. Galt Geotechnics encountered groundwater in the west of the site at approximately RL 2m to RL 3m AHD. Groundwater was not observed at the east of the site and it is expected that this was due to the low permeability of the clayey soils.

3 Earthworks Strategy and Retaining Walls

Pritchard Francis has liaised with surrounding landholders, City of Rockingham, Water Corporation and pipeline managers with regards to site levels. The levels across the site will primarily be dictated by sewer servicing requirements as discussed in Section 5, drainage requirements and ground improvement methods in the eastern portion of the site. Surface levels will require filling up to 2.5m at the eastern extremity of the site.

The key elements of the earthworks strategy for the site are:

- Match into ground levels proposed for the development north of Serpentine Road including any changes to Serpentine Road as a result of development.
- Match into levels at Baldivis Road and the tramway reserve including future upgrades to Baldivis Road and improvement works in the tramway reserve.
- Match into and adjust levels through the major pipeline corridors to achieve integrated and functional open spaces.
- Create finished levels within the site that accommodate gravity-reliant infrastructure to facilitate appropriate servicing (sewer and drainage).
- Interface with and reconstruct Sixty Eight Road, ensuring connection to Lots to the south is not adversely affected
- Provide appropriate clay works and clay grading to improve existing site conditions to allow urbanisation.

A conceptual bulk earthworks plan has been provided in Appendix Two.

The organic clay material at the east of the site is not suitable without improvement. Ground improvement methods in this area need to be investigated to allow residential development, or the material is to be removed and replaced with sand. Works may also be required to grade the underlying clay material at the site, if it is close enough to the finished surface levels. Whilst ground improvement works will be required in part, we believe the site is suitable for residential development.

4 Stormwater Drainage

The Peel Sub Drain B runs at the east of the site in a north to south direction. This drain is currently maintained by the Water Corporation, however discussions with Water Corporation and City of Rockingham have confirmed that responsibility for drainage of the area shall transfer to the City of Rockingham following urbanisation. As part of drainage works on site the drain will be piped and realigned to suit road layout and open space drainage areas.

Geotechnical investigation in the western portion of the site indicated that disposal of stormwater via infiltration would likely be suitable, with a minimum recorded permeability of 4m/day. As the sand cover over clay decreases infiltration as the sole disposal methods will no longer be suitable. In the east of the site, attenuation then outflow via the existing drainage path will be required due to the low permeability of materials present.

Stormwater will be collected via pits in roadways and piped to attenuation or infiltration basins. Depending on the final depth of sand cover over impervious layers, lot connection pits for drainage may be required.

Subsoil drainage in conjunction with clay grading may be required on site where the depth of sand cover over impermeable material is shallow.

5 Sewer Reticulation

There is no existing sewer reticulation servicing the site. Attached in Appendix Three is the relevant sheet of the catchment plan for the site. Sewers will grade from east to west due to the wastewater pumping station (Type 90) which is located on the opposite side of Baldivis Road. As such the availability of sewer reticulation will not limit development.

Due to a significant portion of the site being low lying, significant fill will be required across the site to achieve suitable levels for sewer servicing. This is noted on the sewer catchment plan and also discussed in Section 3.

6 Water Reticulation

As part of a recent Water Corporation review of the water servicing to the area the site has been placed in the Tamworth Hill scheme. Connection to the existing reticulation network will be via 150mm mains extensions from developments to the west and north. Refer Appendix Four for correspondence with Brett Coombes of the Water Corporation providing revised planning.

7 ATCO Gas

There is an existing high pressure gas main in Baldivis Road which has sufficient capacity to service the site.

Refer Appendix Five which shows the location of ATCO Gas services.

8 Electrical Reticulation

There is currently high voltage overhead power line running north-south through the western portion of the site which will need to be realigned. A low voltage overhead power line is also present on the eastern edge of the tramline. In the south west corner of the site there is an underground high voltage cable present which continues west down Sixty Eight Road.

9 Communications

There is a current NBN Master Developer Agreement for the development of Lots 21 Sixty Eight Road, Lots 569 and 1263, Baldivis Road, Baldivis. As such the NBN network will be reticulated through these sites. It is expected that this network will be extended as required to service the development of the subject site.

10 Major Pipelines

Pritchard Francis has liaised with the operators of the major gas and water pipelines that traverse the site as they pose a significant constraint to the site and a crossing over the pipelines will be required by roads and services.

Pritchard Francis met with Water Corporation on site in December 2016 to discuss asset protection requirements. Liaison with APA Group has been ongoing and a Pipeline Management Plan will be prepared as planning for the site progresses.

11 Conclusion

Pritchard Francis have been commissioned by KEC Nominees to review engineering servicing requirements for Lots 503, 1006, 1007 and 1272 Baldivis Road and Lot 1 Serpentine Road, Baldivis.

The subject site falls within current Water Corporation sewer and water catchments. It also has access to existing ATCO Gas reticulation, NBN and electrical services adjacent to the site.

Stormwater infiltration with Public Open Space is proposed to treat all stormwater run-off from the road reserves. This strategy will be developed with further with integration into the LWMS. The existing Water Corporation drain will be urbanised into the local road system to continue conveyance through the site.

Based on all items within the Engineering Services Report, Pritchard Francis Pty Ltd believes that the proposed development is capable of being serviced with all essential services and with careful consideration in design will result in a high quality development.

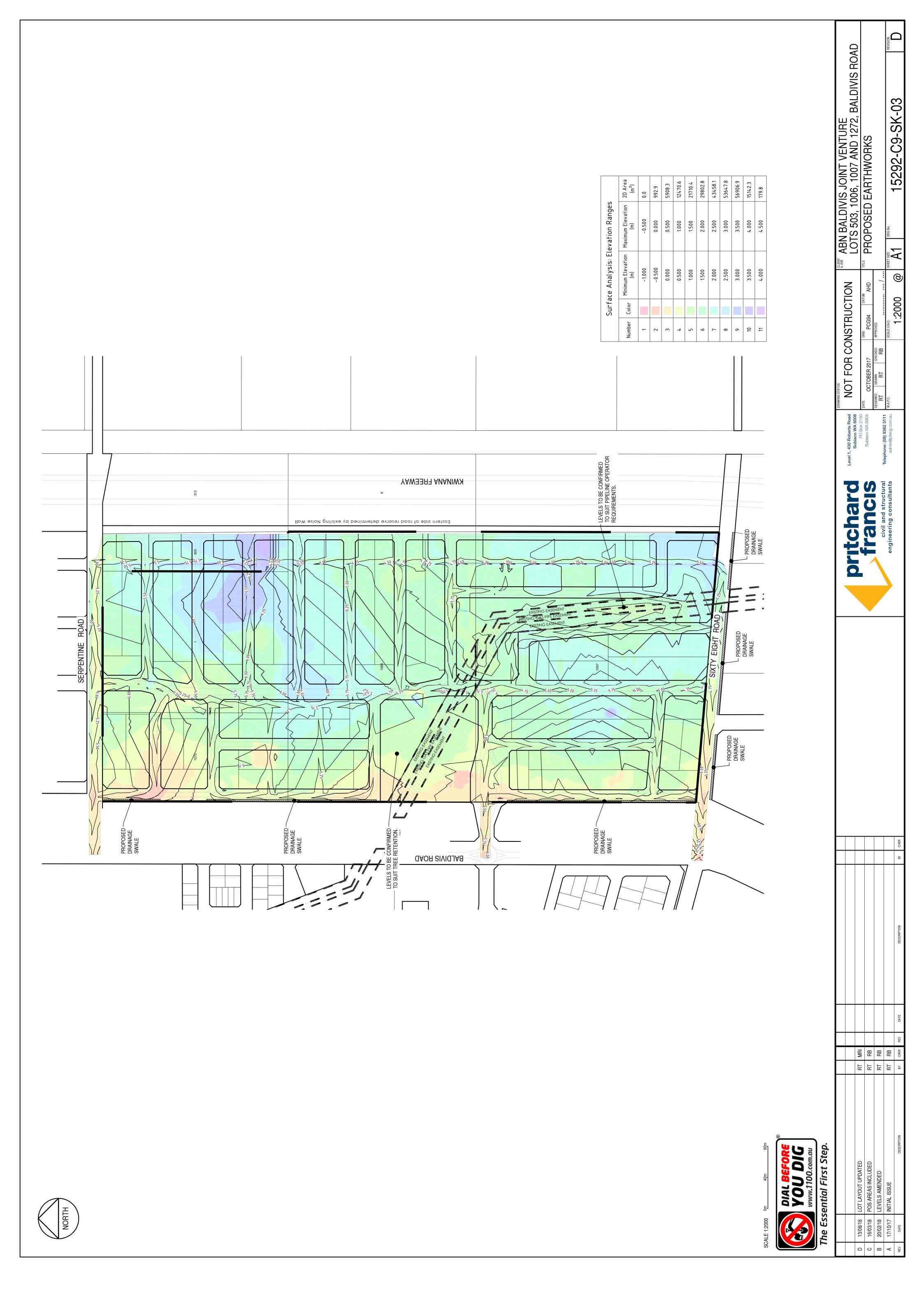
Appendices

Appendix One: CLE Concept Plan

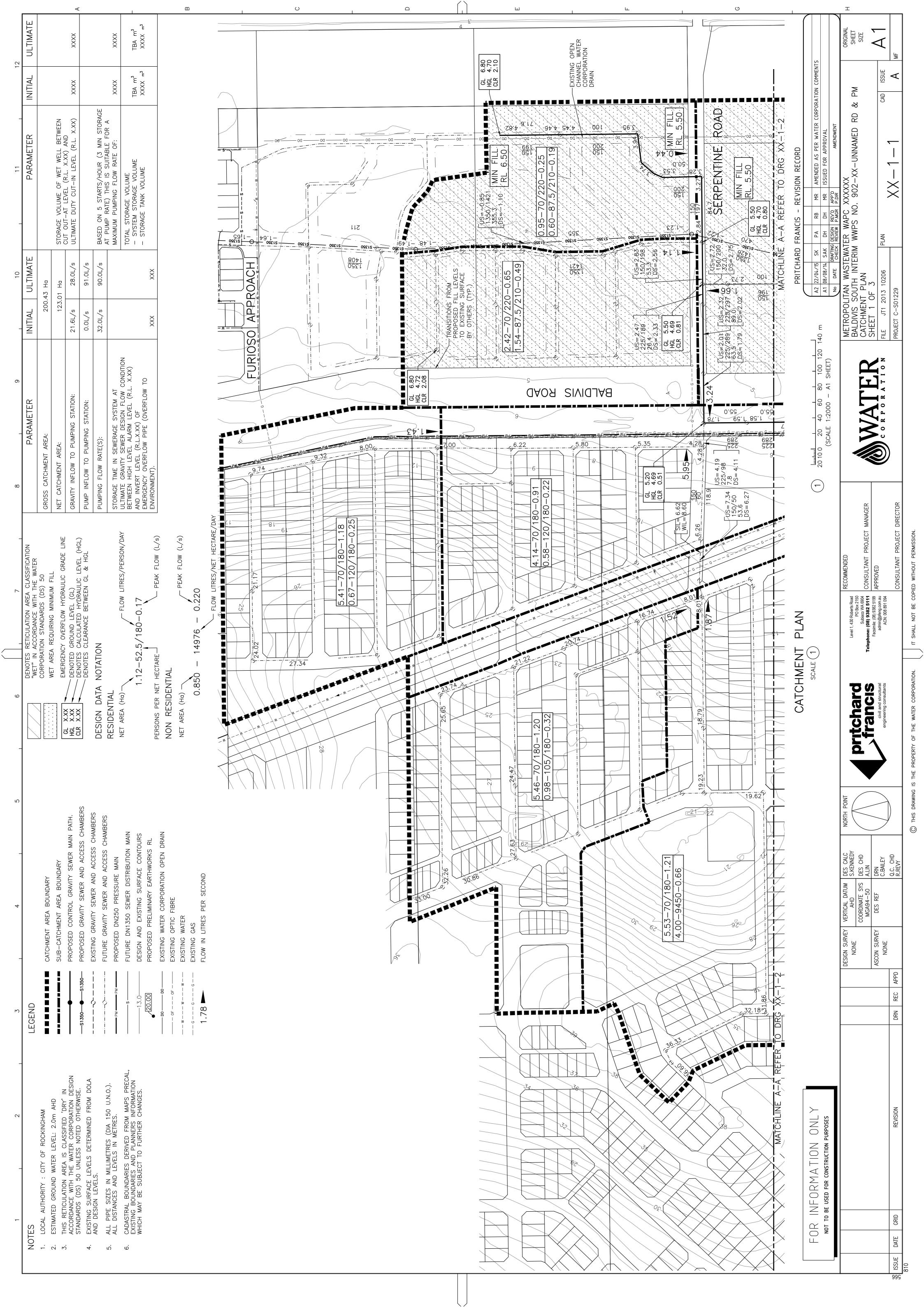
Appendix Two: Conceptual Levels Plan

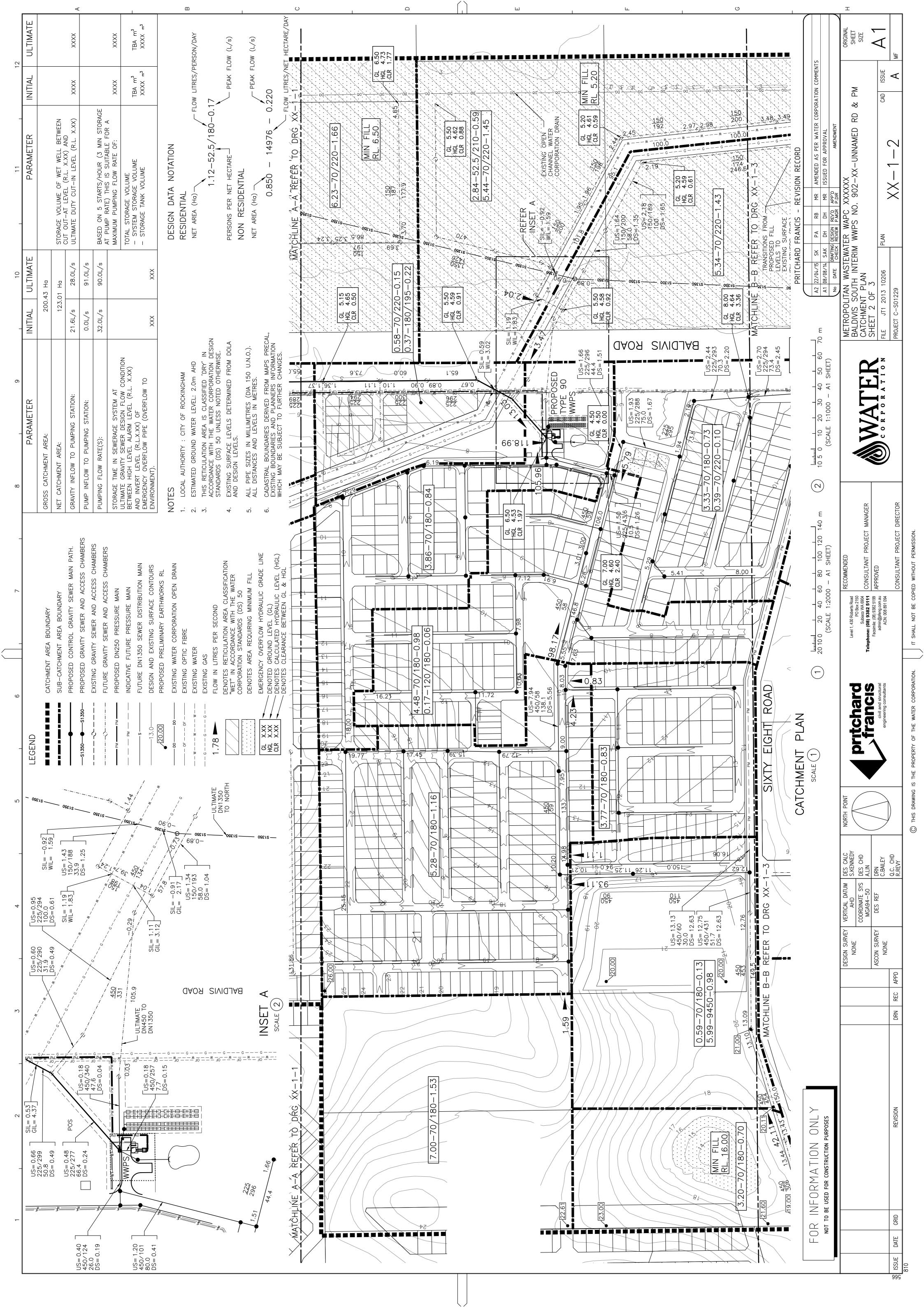

Appendix Three: Sewer Catchment Plan

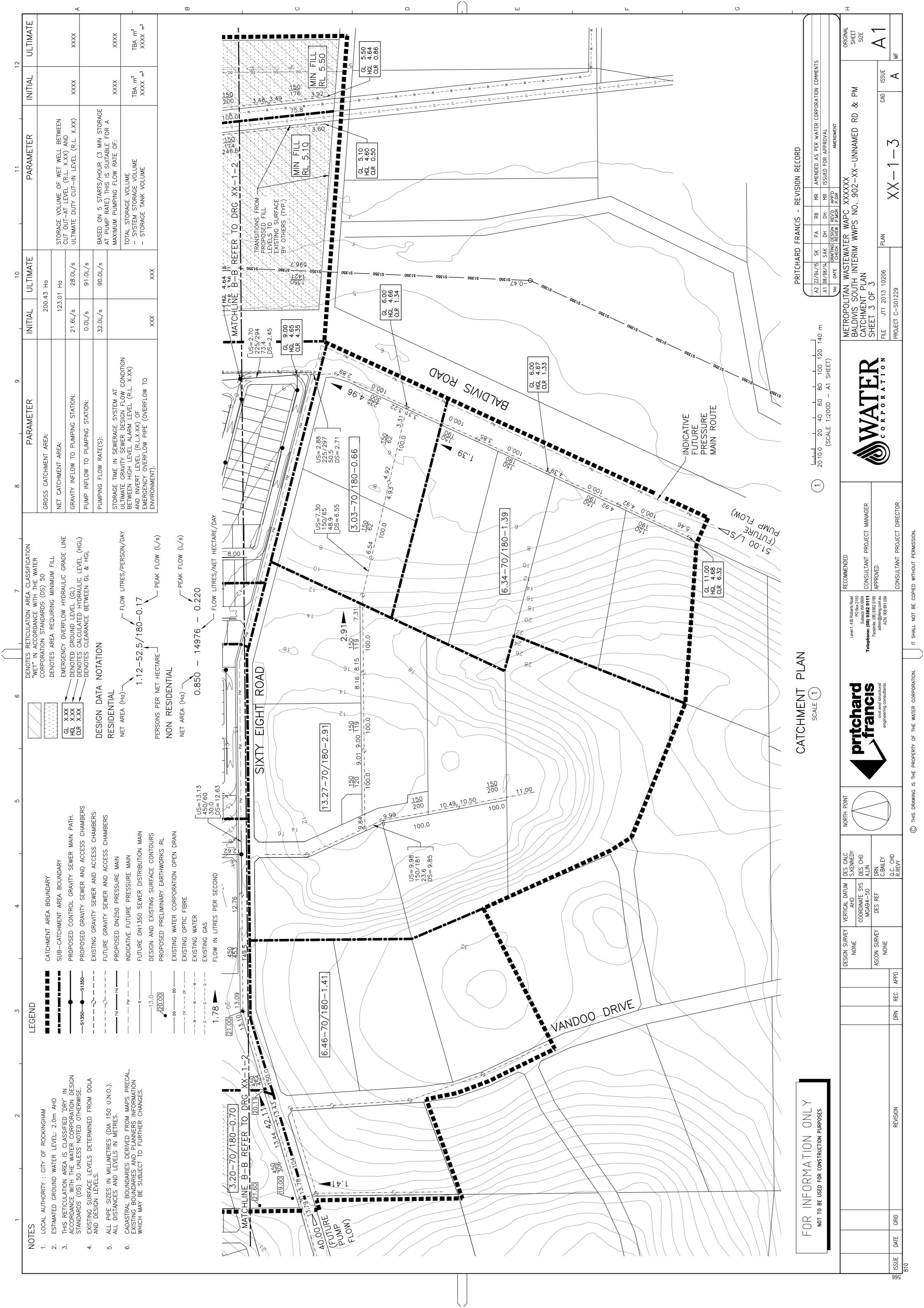
Appendix Four: Water Concept Plan


Appendix Five: Existing ATCO Gas Services

Appendix Six: Galt Geotechnics Investigation

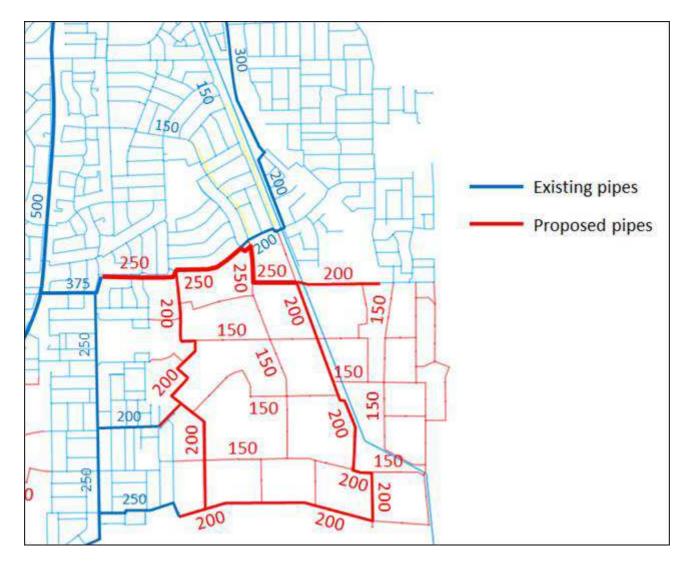

Appendix One: CLE Concept Plan




Appendix Two: Conceptual Levels Plan

Appendix Three: Sewer Catchment Plan

Appendix Four: Water Concept Plan


Ryan Brook

From: Brett Coombes < Brett.Coombes@watercorporation.com.au>

Sent: Monday, 22 February 2016 2:49 PM

To: Ryan Brook

Subject: RE: Water Planning for Lot 1006 Baldivis Road

Brett Coombes

Senior Urban Planner Assets Planning Group **Water Corporation T:** (08) 9420 3165

From: Ryan Brook [mailto:ryan.b@pfeng.com.au]

Sent: Friday, 19 February 2016 3:11 PM

To: Brett Coombes

Subject: Water Planning for Lot 1006 Baldivis Road

Hi Brett,

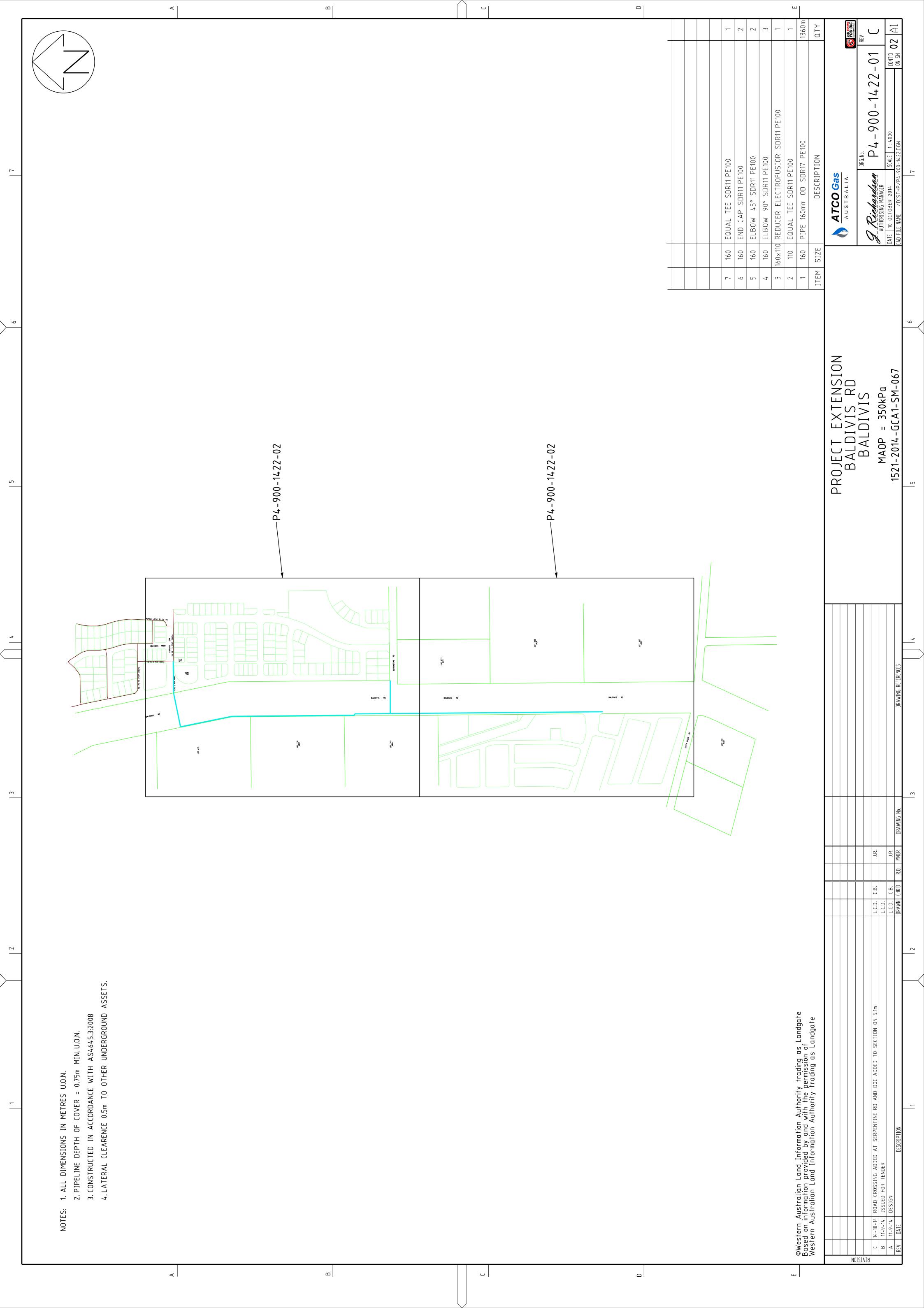
Have discussed with you previously that Lot 1006 Baldivis Road and surrounds (North of Sixty Eight Road, East of Baldivis Road) which is not within the Tamworth water supply scheme. Do you know if there has been any more progress on the reassessment of supply to this area by Water Corporation?

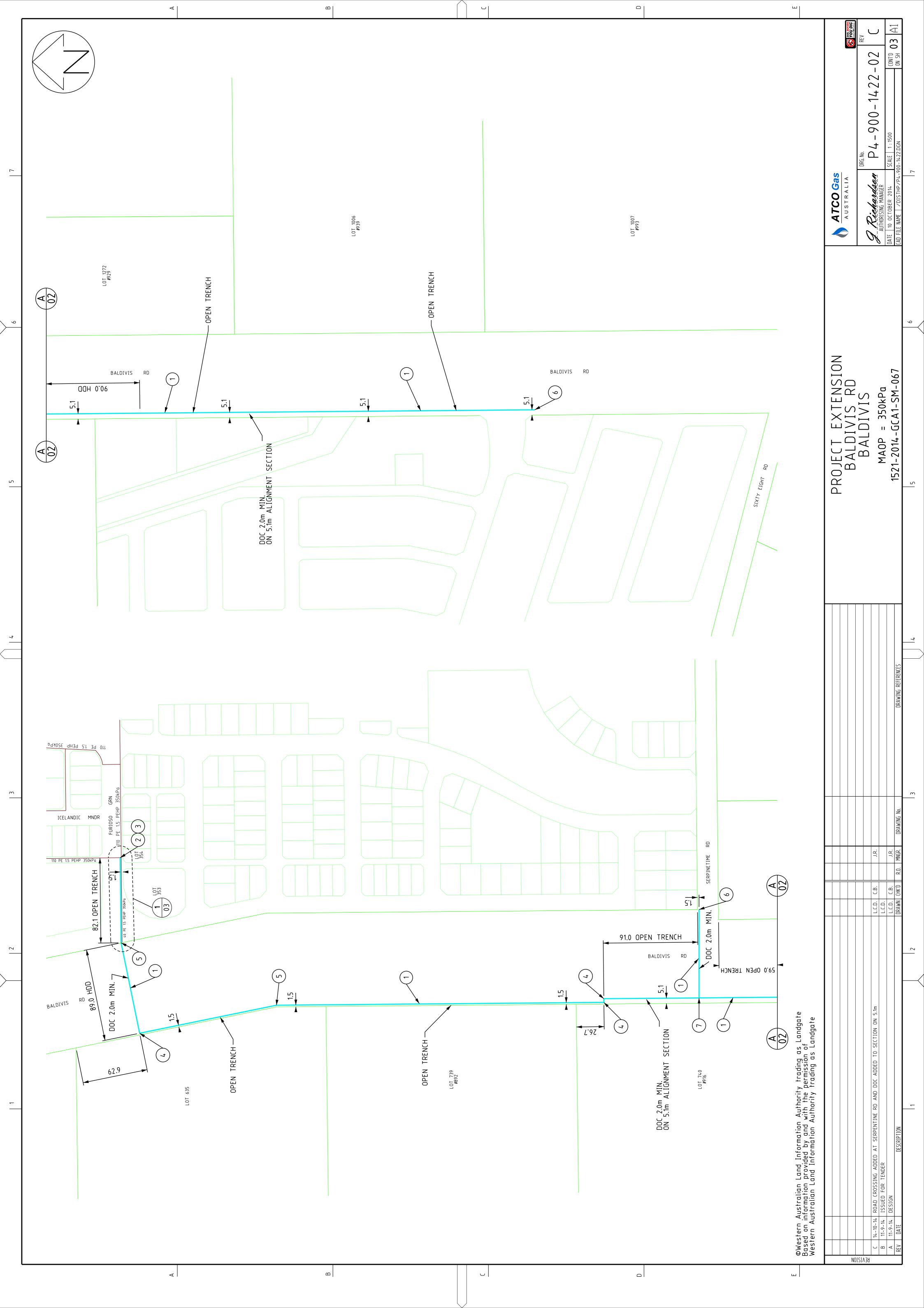
Our planner for the area has had some preliminary discussions with the Department of Planning prior to lodging an MRS amendment for the area and provided the following comments;

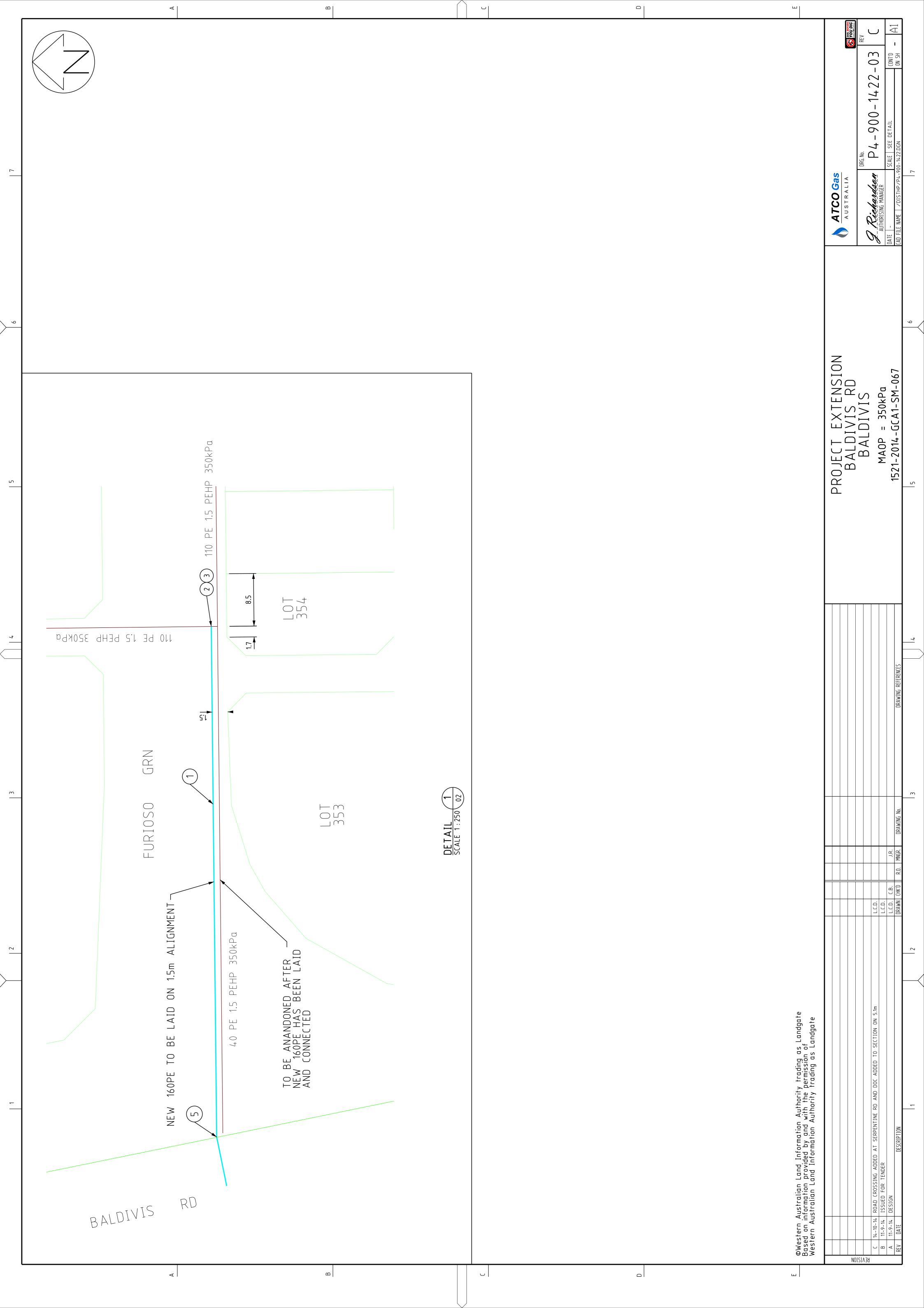
Regarding reticulated water, we were told that as part of the recent MRS Amendment over Heritage Park (immediately north of our site), Water Corp suggested that getting reticulated water further south (i.e to our land) may be problematic and that the system was currently at capacity. The Department admitted that this was potentially aged advice, but can we ask that you review this and confirm your report? This may not be the issue as I understand we are brining water in via Brightwood and not form the south. And hopefully the service planning in the area has also progressed since this advice was given and this is now all a non-issue - but it would be nice to confirm prior to lodgement.

Any further advice you could provide on this area would be appreciated.

Thanks, **Ryan Brook** Engineer - Civil BE (Hons) BCom


T (08) 9382 5111 | E ryan.b@pfeng.com.au | W www.pfeng.com.au Level 1, 430 Roberts Road, Subiaco WA 6008 | PO Box 2150 Subiaco WA 6904




Water Corporation E-mail - To report spam Click <u>here</u>

This Electronic Mail Message and its attachments are confidential. If you are not the intended recipient, you may not disclose or use the information contained in it. If you have received this Electronic Mail Message in error, please advise the sender immediately by replying to this email and delete the message and any associated attachments. While every care is taken, it is recommended that you scan the attachments for viruses. This message has been scanned for malware by Websense. www.websense.com

Appendix Five: Existing ATCO Gas Services

Appendix Six: Galt Geotechnics Investigation

Report on

GEOTECHNICAL& ENVIRONMENTAL STUDY PROPOSED RESIDENTIAL SUBDIVISION 939 & 993 BALDIVIS ROAD, BALDIVIS

Submitted to:

ABN Group Ground Floor, 131 Hasler Road OSBORNE PARK WA 6017

www.galtgeo.com.au 2/39 Flynn St, WEMBLEY WA 6 014 T: +61 (8) 6272-0200 F: +61 (8) 9285-8444

TABLE OF CONTENTS

1.	Intr	oduction	1
2.	Site	Description and Proposed Development	1
3.	Proj	ect Objectives	2
4.	Field	dwork	2
5.		pratory Testing	
	5.1	Geotechnical	
	5.2	Environmental	
6.		Conditions	
Ο.	6.1	Geology	
		Subsurface Conditions	
	6.2		
_	6.3	Groundwater	
7.		technical Assessment	
	7.1	Site Classification	
	7.2	Site Preparation	
	7.3	Construction Issues and Drainage	
	7.4	Compaction	7
	7.4.	1 Sand	7
	7.4.	2 Clay	8
	7.5	Approved Fill	8
	7.6	Reuse of Topsoil	9
	7.7	Treatment of Organic Clay	9
	7.8	Earth Retaining Structures	10
	7.9	Stormwater Disposal	11
	7.10	Pavement Design	11
8.	Acio	Sulfate Soils Assessment	12
	8.1	Assessment Criteria	12
	8.2	Field Testing Results	12

8.3	Laboratory Analysis	12
8.4	Summary	
9. Clo	osure	13
TABLES	(WITHIN TEXT)	
Table 1:	: Summary of Infiltration Test Results	3
Table 2:	: Summary of Laboratory Test Results	4
Table 3:	: Retaining Wall Geotechnical Design Parameters	10

TABLES (ATTACHED)

Table A1: Summary Of Tests

Table A2: Acid Sulfate Soil Test Results

FIGURES

Figure 1 – Site and Location Plan

Figure 2 – Location of Acid Sulfate Soils

APPENDICES

APPENDIX A: SITE PHOTOGRAPHS

APPENDIX B: BOREHOLE REPORTS

APPENDIX C: PENETROMETER TEST RESULTS

APPENDIX D: INFILTRATION TEST RESULTS

APPENDIX E: GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX F: ENVIRONMENTAL LABORATORY CERTIFICATES OF ANALYSIS AND CHAIN OF CUSTODY

DOCUMENTATION

APPENDIX G: UNDERSTANDING YOUR REPORT

1. INTRODUCTION

This report presents the outcomes of Galt Geotechnics Pty Ltd and Galt Environmental Pty Ltd (Galt's) geotechnical and environmental study for the proposed residential subdivision at 939 & 993 Baldivis Road, Baldivis ("the site"). The location of the site relative to the surrounding area is shown on Figure 1, Site and Location Plan.

The work was authorised by Steve Claudio via a signed client authorisation form dated 21 October 2015.

2. SITE DESCRIPTION AND PROPOSED DEVELOPMENT

Based on the supplied information, the site is approximately 18.8 ha in plan area and rectangular in shape. It is bounded by Sixty-Eight road to the south, Baldivis Road to the west, Kwinana Freeway to the east and by existing residential properties to the north.

The areas of the various lots are as follows:

939 Baldivis Road: 8.388 ha; and993 Baldivis Road: 10.362 ha.

The site has been cleared but is largely undeveloped, with a residential dwelling and associated sheds present in both lots along the western boundary. Scattered trees are present through the site, predominantly along fence lines within the properties. A buried high pressure gas and water main traverse the site, entering the site along the western boundary of 939 Baldivis Road, and exiting the site along the southern boundary of 993 Baldivis Road. A small drain running north-south is also present close to the eastern boundary of the site.

Based on a site plan provided by Pritchard Francis, we understand the site surface levels fall from around RL 5 m AHD along the western boundary to around RL 3 m AHD along the eastern boundary.

Based on the provided drawings showing the minimum fill requirements for reticulated sewers, we understand that between 0.5 m and 2.5 m of fill will be imported to raise the existing surface levels (finished surface levels between RL 5.1 m and RL 5.5 m AHD). The fill thickness typically ranges between 0.5 m in the west of the site, increasing to around 2.5 m thick along the eastern boundary.

It is understood that the proposed development will comprise the subdivision of the site into residential lots and the construction of new access roads. It is expected that the new residential structures will be single or double storey brick masonry and founded on shallow footings, with ground-bearing slabs. Target site classification is likely to be 'Class A' in accordance with AS2870-2011.

We understand that the existing pipeline easement present in the south of the site will be left relatively undeveloped, with minimal to no earthworks proposed within this area, the only exception being a road crossover the easement near the centre of the site. We understand that only minor filling will occur at the proposed road crossing (0.5 m or less), with the crossing to be constructed close to the existing surface level.

3. PROJECT OBJECTIVES

The objectives of the study were to:

Geotechnical

- assess subsurface soil and groundwater conditions across the site, with a particular emphasis on:
 - the presence and depth of clayey soil across the site;
 - o the presence, thickness and organic content of any topsoil;
 - the consistency of the backfill to the gas and power trenches in the area of the proposed road crossing; and
 - the presence of any sediment/organic material/soft soil within the drain along the eastern boundary.
- provide a site classification(s) in accordance with AS 2870-2011 "Residential Slabs and Footings";
- provide recommendations and geotechnical design parameters for earth retaining structures;
- recommend appropriate site preparation procedures including compaction criteria and recommendations for elevation of the site above groundwater level;
- assess the permeability of the soils at the site for potential on-site disposal of stormwater by infiltration;
- provide a subgrade California bearing ratio (CBR) value for pavement thickness design by others; and
- recommend any further studies which may be required to facilitate detailed design and earthworks.

Environmental

- identify the nature and extent of acid sulfate soil (ASS) material (if any) across the site;
- recommend appropriate strategies for the management ASS (if any) during any proposed excavation works; and
- recommend any further studies which may be required to facilitate detailed design and earthworks.

4. FIELDWORK

Fieldwork was carried out on 23 and 28 October 2015 and comprised:

- a site walkover including taking photographs;
- drilling of machine-augered boreholes at 23 locations:
 - o 20 locations extending to 2.5 m, spread over the site; and
 - o three locations along the existing drain, extending to depths of 1.5 m;
- testing with a dynamic cone penetrometer (DCP) or a Perth sand penetrometer (PSP) adjacent to the boreholes, and at three locations near the proposed road crossing over the pipeline easement, extending to depths of between 0.9 m and 1.8 m;
- infiltration testing using the 'inverse auger hole technique' at four locations, at a depth of about 0.5 m below the existing ground level; and
- hand excavated test pits at four locations, extending to depths of about 0.5 m.

General

Test locations were selected and positioned by a geotechnical engineer from Galt using a handheld GPS, accurate to within +/- 5 m in the horizontal plane. Our engineer conducted the walkover survey, observed the drilling, logged the materials encountered and performed the infiltration and penetrometer testing.

The approximate test locations are shown on Figure 1, Site and Location Plan and details are summarised in Table A1: Summary of Tests. Photographs of the site are presented in Appendix A, Site Photographs.

Machine Augered Boreholes

Boreholes were drilled using a utility mounted Eziprobe equipped with a 100 mm auger. Borehole reports along with the method of soil description used on the reports are presented in Appendix B, Borehole Reports.

Penetrometer Testing

Penetrometer testing was carried out adjacent to each machine auger borehole and three additional locations where the proposed road crossing across the pipeline easement is located.

Dynamic cone penetrometer (DCP) tests were carried out in accordance with AS1289.6.3.2. Perth sand penetrometer (PSP) tests were conducted in accordance with AS 1289.6.3.3 although to a greater depth than the 0.45 m covered in the standard.

The results of the penetrometer testing are presented in Appendix C, Penetrometer Test Results.

Infiltration Tests

Infiltration testing was carried out in hand-augered boreholes using the method described by Cocks¹. The results of the infiltration testing are presented in Appendix D, Infiltration Test Results and summarised in Table 1.

Minimum Unsaturated Permeability¹, k (m/day) Test **Pipe Embedment** Description Location (m) Test 3 Test 1 Test 2 IT01 **SAND** 0.55 14.3 11.7 13.4 **IT02** SAND 0.56 17.8 14.4 8.7 **IT03** SAND 0.5 9.2 9.9 8.5 IT04 **SAND** 0.52 4.9 3.4 3.3

Table 1: Summary of Infiltration Test Results

Note: The minimum unsaturated permeabilities shown are typically recorded towards the end of the test, with pressure head varying between about 0.52 m and 0.08 m.

Environmental Sampling

Soil samples for the ASS study were collected from the boreholes in accordance with the following guideline and Australian Standard.

- AS 4482.1 (2005) Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part I Non Volatile and Semi Volatile Compounds; and
- Department of Environment and Conservation (DEC) (2013) *Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes*.

Samples were collected at 0.25 metre intervals from boreholes using dedicated nitrile gloves and placed in laboratory supplied plastic zip-lock bags. The samples were then placed in an ice-chilled cooler until field testing and submission to the laboratory for analysis.

ABN: 64 625 054 729

Cocks, G (2007), "Disposal of Stormwater Runoff by Soakage in Perth Western Australia", Journal and News of the Australian Geomechanics Society, Volume 42 No. 3, pp 101-114

5. LABORATORY TESTING

5.1 Geotechnical

Laboratory testing was undertaken by Civil and Mining Geotest in their NATA accredited laboratory. The testing comprised determination of:

- particle size distribution on five samples;
- Atterberg limits on five samples; and
- organic content on four samples.

Laboratory test results along with the test methods followed are presented in Appendix E, Geotechnical Laboratory Test Results. The results are summarised in Table 2: Summary of Laboratory Test Results.

Table 2: Summary of Laboratory Test Results

Test Location	Sample Depth (m)	% Organics	% Gravel	% Sand	% Fines	LL (%)	PI (%)	LS (%)
HTP01	0.0 - 0.3	10.5	1	19	80	58	24	9.5
HTP02	0.0 - 0.3	10.7	6	16	78	72	37	13.5
HTP03	0.0 - 0.3	10.1	1	53	46	42	16	8.0
HTP04	0.0 - 0.3	10.0	1	26	63	49	17	8.0
BH16	1.0 – 2.0	-	0	7	93	120	82	27.5

Note:

LL - Liquid Limit

PI – Plasticity Index

LS - Linear Shrinkage

5.2 Environmental

Soil samples were tested for pH before (pH_F) and after (pH_{FOX}) rapid oxidation with hydrogen peroxide (H_2O_2) . The field tests were undertaken to provide an indication of soil types likely to have the potential to generate acidity as a result of oxidation during earthworks. Test results are included in Table A2 at the end of the text.

Selected samples were chosen for laboratory analysis for the chromium reducible sulfur (CRS) method, which provides acid base accounting and quantification of potential acid generation. The selection of samples for laboratory analysis was based on soil type and the results of field testing. Analysis of soil samples was undertaken by Eurofins in their NATA accredited laboratory. Laboratory certificates of analysis are presented in Appendix F, Environmental Laboratory Certificates of Analysis.

6. SITE CONDITIONS

6.1 Geology

The Rockingham sheet of the 1:50,000 scale Environmental Geology series map indicates that central and eastern portions of the site are underlain by:

Clayey SILT – Dark greyish brown, mottled in part, soft when wet, plastic in part, blocky, variable clay content, of alluvial origin.

The western portion of the site is underlain by:

Bassendean SAND – very light grey at surface, yellow at depth, fine to medium grained, sub-rounded quartz, moderately well sorted, of eolian origin, present as relatively thin layer over clayey / silty soils.

The findings of our investigation are generally in accordance with geological mapping in the west of the site, with the sand extending further to the east than shown on the geological mapping.

The eastern portion of the site is underlain by Organic SILT / Organic CLAY in the top 0.5 m. The Organic SILT / Organic CLAY did not seem to be as prevalent around the location of the drain in the east of the site, with this area directly underlain by CLAY. It is assumed that the surficial 0.5 m to 1.0 m around the drain was stripped to facilitate its construction.

6.2 Subsurface Conditions

The subsurface conditions at the site are variable, but can be summarised as follows:

Western portion of the site:

- SAND (SP) fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace organics, dry, medium dense, present from the ground surface to depths of between 0.5 m and greater than 2.5 m; overlying
- SANDY CLAY/CLAYEY SAND(CI/SC) medium plasticity fines, fine to coarse grained sand, sub-angular to sub-rounded, dark grey, moist becoming wet, present to the maximum investigated depth of 2.5 m.

Eastern portion of the site:

- Organic CLAY (OH) medium plasticity fines, dark brown, with some fine to coarse grained sand, with some organics (~10%), trace rootlets, dry becoming moist, stiff upper crust on the material which becomes very soft to firm below, present from the ground surface to depths of up to 0.6 m; overlying
- CLAY (CH), high plasticity fines, dark grey, trace fine grained sand, moist becoming wet, stiff, present to the maximum investigated depth of 2.5 m.

The Organic CLAY present in the eastern portion of the site typically has a stiff upper crust (top 0.1 m to 0.2 m), which becomes very soft to firm below. Large shrinkage cracks were also observed at the surface where the organic clay is present.

6.3 Groundwater

The Perth Groundwater Atlas (1997) does not extend to the site, but nearby data suggests that the maximum historic groundwater level at the site would be around RL 3 m to RL 4 m AHD. The Perth Groundwater Atlas (2004) which reflects the late summer groundwater levels, shows the groundwater level to be around RL 2 m AHD.

We expect a perched groundwater level is likely to be present over the clayey soils in the east of the site during wetter times of the year.

In the west of the site, groundwater was encountered at depths of between 1.4 m and 2.5 m. This equates to a groundwater level of around RL 2 m to RL 3 m AHD. Groundwater was not observed in the eastern half of the site, except for the standing water present in the existing drain. We expect that this is due to the low permeability of the clayey soils, and the relatively short time for which the boreholes were left open (i.e. groundwater may be expected to seep into boreholes and excavations very slowly).

7. GEOTECHNICAL ASSESSMENT

7.1 Site Classification

We have assessed the site in accordance with AS 2870 – 2011 "Residential Slabs and Footings". Based on the proposed raising of the existing surface levels within the site, we consider that a site classification of "Class A" will be applicable provided at least 1.8 m of natural sand or sand fill is present over the underlying clayey soils and all organic/soft soils are removed/remediated.

Isolated areas of the site, in particular close the centre of the site, may have between 1.2 m and 1.8 m of sand fill overlying clayey soils. We consider that a site classification of "Class S" is appropriate for these isolated areas. Improvement of this area to "Class A" is possible with importation and placement of inert sand fill to produce a total thickness of about 1.8 m of inert fill overlying the clayey material below building footprints.

The above classification is applicable provided that the site preparation, presented in Section 7.2, is undertaken prior to construction.

Note: In its current state the majority of the site is classified as "Class P" due to the presence of Organic CLAY. It is necessary to treat or remove this material in order to achieve the specified site classifications.

7.2 Site Preparation

The site preparation measures outlined below are aimed at improvement of the site in preparation for construction of the structures including on-ground slabs, shallow footings, retaining walls and pavements.

The following site preparation measures must be undertaken:

Western Portion of the Site

- Demolish the existing structures onsite and remove offsite. This includes buried soak wells, fences and outbuildings.
- Stockpile the sandy topsoil for potential re-use in non-structural applications or for possible blending with clean sand. We recommend a 100 mm topsoil strip or as otherwise necessary to remove all significant organic material from the soil.
- Excavate to the required level (if at all).
- Compact the exposed stripped surface to a depth of 0.9 m (Section 7.4). **Note:** Where there is more than 1 m of bulk fill to be placed over the in-situ sand, the depth of compaction can be reduced to 0.45 m.
- Where fill is required to build up levels, use approved fill (Section 7.5), placed and compacted in layers no greater than 0.3 m loose thickness.

Eastern Portion of the Site

- Demolish the existing structures onsite and remove offsite. This includes buried soak wells, fences and outbuildings (where present).
- Strip and dispose of off-site the clayey topsoil and the remaining organic clayey layer (unless you are going to treat it in-situ, refer Section 7.7) from the eastern portion of the site. We recommend a strip as necessary to remove all significant organic material from the soil (likely to be around 0.4 m to 0.6 m). The stripped area must be inspected by a geotechnical engineer to ensure the area has been adequately stripped prior to filling.
- Once the organic clay material is removed, compact the exposed surface to a depth of 0.3 m (Section 7.4) assuming more than 1 m of bulk fill to be placed over the clayey soils. It will probably be necessary to tine the surface and allow it to dry back to around OMC (in dry weather) to be able to undertake compaction.

- Grade the exposed clayey surface to promote the runoff of water and prevent water from ponding over the clayey soils. We recommend a grade of at least 1%.
- Where fill is required to build up levels, use approved fill, placed and compacted in layers no greater than 0.3 m loose thickness.

Compaction and trafficking of the clayey areas of the site must NOT be attempted when the site is wet (i.e. following rainfall or if the site has been over-wet during moisture conditioning). It will be necessary to let the site dry out or trim wet soil off to expose underlying drier material. Attempting to traffic or compact the wet clayey soils is likely to result in soil disturbance and significant softening of the clayey soils.

7.3 Construction Issues and Drainage

Due to the low permeability of the clayey soils in the east of the site, storm-water runoff is expected to pond on the ground surface during the wetter parts of the year. This may cause difficulties during construction including:

- heaving and rutting of saturated clayey soils when trafficked; and
- softening of clayey soils when water is allowed to pond.

We therefore recommend that earthworks are carried out in the summer months, even though earthworks conducted in summer have their own issues such as dust control and rapid drying out of soils.

7.4 Compaction

7.4.1 Sand

Approved granular fill and the *in situ* sands must be compacted using suitable compaction equipment to achieve a dry density ratio of at least 95% MMDD (maximum modified dry density) as determined in accordance with AS 1289 5.2.1 at a moisture content within 2% of optimum moisture content (OMC).

A Perth sand penetrometer (PSP) may be used for compaction control on in-situ sand and imported sand fill. We consider that the following blow counts correspond to a DDR of 95% MMDD:

0-150 mm: SET
150-450 mm: 8
450-750 mm: 10

750-1050 mm: 12 (or 750-900 mm: 6)

If difficulties are experienced recording the required blow count, a site-specific PSP correlation should be carried out to determine the PSP blow count correlating to a DDR of 95% MMDD. The correlation must:

- be done on site;
- use the nuclear density gauge (NDG) to determine density at a minimum of 5 points with varying density to a depth of 300 mm below surface;
- use a calibrated PSP to determine the PSP blow count from 150 mm to 450 mm at each of the NDG test points; and
- be plotted on a chart of PSP blow count vs DDR.

If gravel is used as fill, compaction testing must be done using a nuclear density gauge (NDG) in accordance with AS1289.5.8.1.

Over-excavation and replacement of loose materials must be done where the minimum dry density ratio cannot be achieved.

Fill must be placed in horizontal layers of not greater than 300 mm loose thickness. Each layer must be compacted by suitable compaction equipment, and carefully controlled to ensure even compaction over the full area and depth of each layer.

Care will need to be taken when compacting in the vicinity of existing structures, such as adjacent properties. This is particularly important if vibratory compaction is being carried out. Tynan (1973)² provides assistance with the selection of compaction equipment for use adjacent to structures. Of particular concern are the existing masonry buildings on adjacent lots.

Large compaction equipment (self-propelled vibrating rollers, etc.) must not be used within 2 m behind retaining walls. Hand compaction plant (e.g. plate compactors) must be used.

7.4.2 Clay

The *in situ* clayey soils and clay fill must be compacted using suitable compaction equipment to a minimum dry density ratio of 95% SMDD (standard maximum dry density) as determined in accordance with AS1289.5.1.1.

The in-situ clay and clay fill will require careful moisture conditioning so that the moisture content of the material is between optimum moisture content (OMC) and 2% wet of OMC at the time of placement and compaction. We note that compaction to 95% SMDD can be difficult to achieve for the clayey in situ material when not appropriately moisture conditioned.

For clayey soils, compaction testing must be done using a nuclear density gauge (NDG) in accordance with AS1289.5.8.1.

The clayey soils on the site will drain poorly when inundated during the wetter times of the year and result in saturated conditions that may inhibit compaction of the soil. To reduce the risk associated with this, we recommend that earthworks are not carried out within 1-2 weeks following heavy rainfall. If difficulties are encountered during compaction due to water, further advice should be sought from a geotechnical engineer.

7.5 Approved Fill

Imported granular fill must comply with the material requirements as stated in AS 3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments".

The sand present at the site is suitable for re-use as inert structural fill. Sand fill containing demolition rubble will not be suitable for re-use as structural fill. Any organic-rich sand or sand containing significant proportions of fines (material less than 0.075 mm in size) must not be used.

The organic-rich clay on the eastern half of the site will not be re-usable as structural fill. The clay below the organic-rich clay could potentially be re-used as structural fill, however it is highly reactive and therefore not expected to be suitable for raising site levels.

Any organic-rich sand (including the nominal 100 mm topsoil strip) or sand containing significant proportions of fines (material less than 0.075 mm in size) must not be used as fill without further treatment.

_

ABN: 64 625 054 729

Tynan (1973) Ground Vibration and Damage Effects on Buildings, Australia Road Research Board, Special Report No. 11.

Where doubt exists, a geotechnical engineer must be engaged to inspect and approve the use of potential fill materials. We must comment on specific topsoil blending regimes once a design permeability has been established for the site.

7.6 Reuse of Topsoil

We expect that sandy topsoil can be suitably blended with clean sand to produce a permeable structural fill, once organics are removed (by screening). This usually requires:

- Drying-out of topsoil (typically by undertaking topsoil strip during late summer, or by stockpiling for several months).
- Screening using a vibrating screen plant (50 mm screen deck or smaller is typically appropriate).
- Blending either mechanically (using scrapers, graders, etc) or through the screen, usually at a rate of 1 to 2 parts clean sand to 1 part screened topsoil.

Where the blended topsoil fill is to be reused in areas where stormwater disposal is proposed, permeability testing of material must be carried out to ensure it meets the specified requirements prior to use. This typically involves the construction of a compacted trial pad approximately 1 m thick of the blended topsoil at different ratios (generally 1:1 and 1:2 parts screened topsoil to clean sand). We can assist with this if required.

7.7 Treatment of Organic Clay

Due to the high organic content and low strength, the in-situ organic clay present in the east of the site requires either excavation and disposal off-site or treatment to stabilise the material. Where material is left in-situ without treatment settlements in the order of 100 mm to 150 mm could be expected.

If the material is to be removed offsite, as the organic clay is classified as actual acid sulfate soil (refer Section 8) the material will require treatment as part of the removal process. This is likely to involve dosing of the excavated material with lime.

If the material is instead to be stabilised in-situ, cement could be added to the clayey material to stabilise the full thickness of the layer. This could be achieved by tining the surface (say to 500 mm deep), applying cement and mixing it into the clay (by further tining or rotary hoe) and then compacting the clay. The clay/cement mix should not be allowed set prior to compaction.

We consider that a treatment rate of between about 3% and 8% cement (i.e. 18 mm to 48 mm for a 600 mm thick layer) may be required. The addition of cement to the organic clay will help dry out the clay, as well as chemically stabilises it to be less reactive. Depending on the blending methodology, lime treatment is unlikely to be required for ASS neutralisation if the material is treated in-situ.

Where the in-situ material will be treated and left in place, blending trials will need to be undertaken to assess adequate cement dosage rates for the clay. We can assist with this if necessary. Lime stabilisation (with quicklime, not aglime) may also be an option, but will require further assessment.

7.8 Earth Retaining Structures

Retaining structures may be designed in accordance with AS 4678 (2002) "Earth Retaining Structures". We recommend that all retaining walls at the site be backfilled with free-draining fill, e.g. sand (imported free draining sand fill with less than 5% fines). We further recommend that retaining walls are founded in sand. If walls are to be founded on clay (or if the sand cover is such that it is less than 1.8 m over clayey soils, hence a site classification of other than 'Class A' will apply), the footing detail should be considered appropriately. Founding on any clay fill is not recommended.

For the design of retaining structures, the following parameters are considered appropriate for compacted sand backfill.

Wall Friction = 0° Wall Friction = 0.5Φ Angle of Coefficient Coefficient Coefficient Coefficient **Bulk** Internal of Active of Passive of Active of Passive Soil Type Density Friction Earth Earth Earth Earth (t/m³)(deg.) Pressure, Pressure, Pressure, Pressure, K_a K_a Kp Κp 34 3.5 0.25 5.7 Compacted sand or gravel fill 18 0.28

Table 3: Retaining Wall Geotechnical Design Parameters

Notes: Earth pressure coefficients are provided in this table for conditions of zero friction between the wall and the soil and with wall friction of $0.5\Phi'$. The retaining wall designer should make an independent assessment of the parameters appropriate to the construction method to be used, including alternative values of wall friction. A horizontal ground surface behind the wall has been assumed.

Unless a suitable drainage layer is placed behind the wall such that a build-up of pore pressure is prevented, the retaining wall must be designed to accommodate water pressure behind the wall (10 kPa per metre height). In this instance, calculation of lateral earth pressures must include the addition of pore pressure (not required for retaining walls entirely within clean sand and sand fill). A separator geotextile (Bidim A14, or similar, or heavier) must also be used between the interface of any granular backfill and in-situ clayey soil.

Where any walls have clayey soil behind them, they must be backfilled with a 300 mm minimum wide layer of free-draining granular fill. A slotted drain (wrapped in a geotextile) should be used at the base of the granular backfill to collect seepage and direct it to a collection point (either discharging by gravity away from the retaining wall, or collecting at a sump fitted with an automatic pump system to ensure that it remains dry).

Compaction plant can augment the lateral earth pressure acting on retaining walls. Hand operated compaction equipment is recommended within 2 m of any retaining walls to minimise compaction pressures.

It is important to note that some ground movement will occur behind any soil retaining system, including gravity retaining walls.

Detailed design of retaining structures should be undertaken using methods appropriate to the proposed retention system.

7.9 Stormwater Disposal

Permeability testing was carried out at four locations in the western portion of the site. The average unsaturated permeability values indicate an average permeability of about 10 m/day (noting that a lower value of around 4 m/day was observed at one location where a thin layer of sand was present over clayey soils). The permeability testing was undertaken at about 0.5 m below existing surface level.

Provided at least 1.2 m of sand or sand fill is present over the maximum groundwater level or clayey soils (whichever level is higher), we consider that the in-situ sand (present in the western portion of the site) and sand fill are suitable for the disposal of stormwater by infiltration by means of soakwells assuming that the site preparation requirements have been carried out (Section 7.2).

The clayey soils in the eastern portion of the site are not suitable for the disposal of stormwater by infiltration.

Notwithstanding the results of the permeability testing, we recommend a design value of permeability (k) not greater than 5 m/day for the in-situ sand and sand fill to allow for the variability in materials and reduced permeability as a consequence of:

- densification of sand during site preparation works;
- natural variation in sands; and
- clogging of the sand around soakwells and soakage basins over time with fines.

Soak wells should be placed outside a line of 1V:2H extending below the edge of the nearest footing, subject to local council regulations. Discharge from soak wells has been known to promote densification of loose sandy soils, leading to settlements of footings and slabs. Soak wells should be carefully wrapped with geotextile to prevent migration of sand and fines into the soak well.

7.10 Pavement Design

Where design of flexible pavements is undertaken, a subgrade California bearing ratio (CBR) of 10% may be assumed for pavement thickness design where the pavement subgrade comprises at least 0.5 m thick layer of sand or sand fill. This CBR assumes that the site preparation requirements outlined in Section 7.2 have been carried out in pavement subgrade areas.

Where the organic clay is stabilised and left in-situ (understood to only be applicable at the proposed road crossing over the pipeline easement), a suitable design CBR will need to be assessed based on the adopted cement/lime ratio. We can assist with this if necessary. We do not recommend construction of pavements over the organic clay if it is not treated.

8. ACID SULFATE SOILS ASSESSMENT

8.1 Assessment Criteria

Results of the soil analysis have been compared with criteria provided in the DER (2015) *Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes*. In most cases, field test results where pH_F values of <3 to 4 are recorded indicate the presence of actual acid sulfate soils (AASS).

Generally, the presence of unoxidised acids or potential (PASS) is indicated if:

- a strong reaction with hydrogen peroxide is observed;
- the pH_{FOX} is at least 1 pH unit below pH_F; or
- the pH_{FOX} is <3 to 4 and one or both of the above conditions apply.</p>

The net acidity criterion of 0.03 %S has been adopted for this investigation as volumes greater than 1000 tonnes of material are to be disturbed. The net acidity value has been calculated using the following formula:

Net acidity = Retained acidity³ + Potential acidity⁴

8.2 Field Testing Results

Soil testing results are presented in Table A2, ASS Test Results (located at the end of the text) and are summarised below.

- Field pH_F test results for all soil samples ranged from 4.5 (BH07/0.00) to 7.2 (BH11/0.00-1.50, BH12/0.0-2.50).
- Field pH_{FOX} test results were lower, ranging from 1.5 (BH14/0.25) to 5.2 (BH09/2.50).
- \bullet Differences between pH_F and pH_{FOX} levels in individual soil samples ranged from 0.0 (BH03/1.75) to 4.0 (BH11/0.50-0.75).
- During oxidation, 132 of the 209 samples field tested displayed a low reaction, 38 displayed a moderate reaction, 27 displayed a high reaction, three displayed an extreme reaction and 9 displayed a volcanic reaction.

8.3 Laboratory Analysis

The acid sulfate soil analytical results using the CRS method are presented also in Table A2 and are summarised below.

- ◆ Titratable actual acidity (TAA) values ranged from <0.02 %S (a number of locations) to 0.13 %S (BH16/0.00).
- CRS values ranged from <0.005 %S (a number of locations) to 0.059 %S (BH25/0.00).
- Net acidity values ranged from <0.02 %S (a number of locations to 0.13 %S (BH16/0.00) with a number of values exceeding to the action criterion of 0.03 %S.

8.4 Summary

Soils located in the western portion of the site that comprise sand, sandy clay and clayey sand had a net acidity that conformed to the adopted criterion, as such these soils are classified as non acid sulfate soils (NASS).

³ Total actual acidity (TAA) value adopted

⁴ Chromium reducible sulfur (CRS) value adopted

Soils located in the eastern portion of the site comprise predominantly organic clay and clay. The net acidity for these soils exceeded the adopted criterion in all samples, as such these soils are classified as actual acid sulfate soils (AASS). Sampling locations where ASS material has been identified are shown on Figure 2.

Based on these results and the presence of ASS, we recommend that an acid sulfate soil management plan (ASSMP) be developed for the site regardless of what earthworking strategy is adopted for the organic clay located on the eastern portion of the site.

9. CLOSURE

We draw your attention to Appendix F of this report, "Understanding your Report". The information provided within is intended to inform you as to what your realistic expectations of this report should be. Guidance is also provided on how to minimize risks associated with groundworks for this project. This information is provided not to reduce the level of responsibility accepted by Galt, but to ensure that all parties who rely on this report are aware of the responsibilities each assumes in so doing.

GALT GEOTECHNICS PTY LTD

Paul Woodroof CPEng

Brad Palmer

Geotechnical Engineer

Environmental Scientist

\\GALT-SBS2011\Data\Jobs\2015\J1501236 - ABN Group SI Baldivis\03 Correspondence\J1501236 001 R Rev0.docx

Tables

Table A1: Summary Of Tests

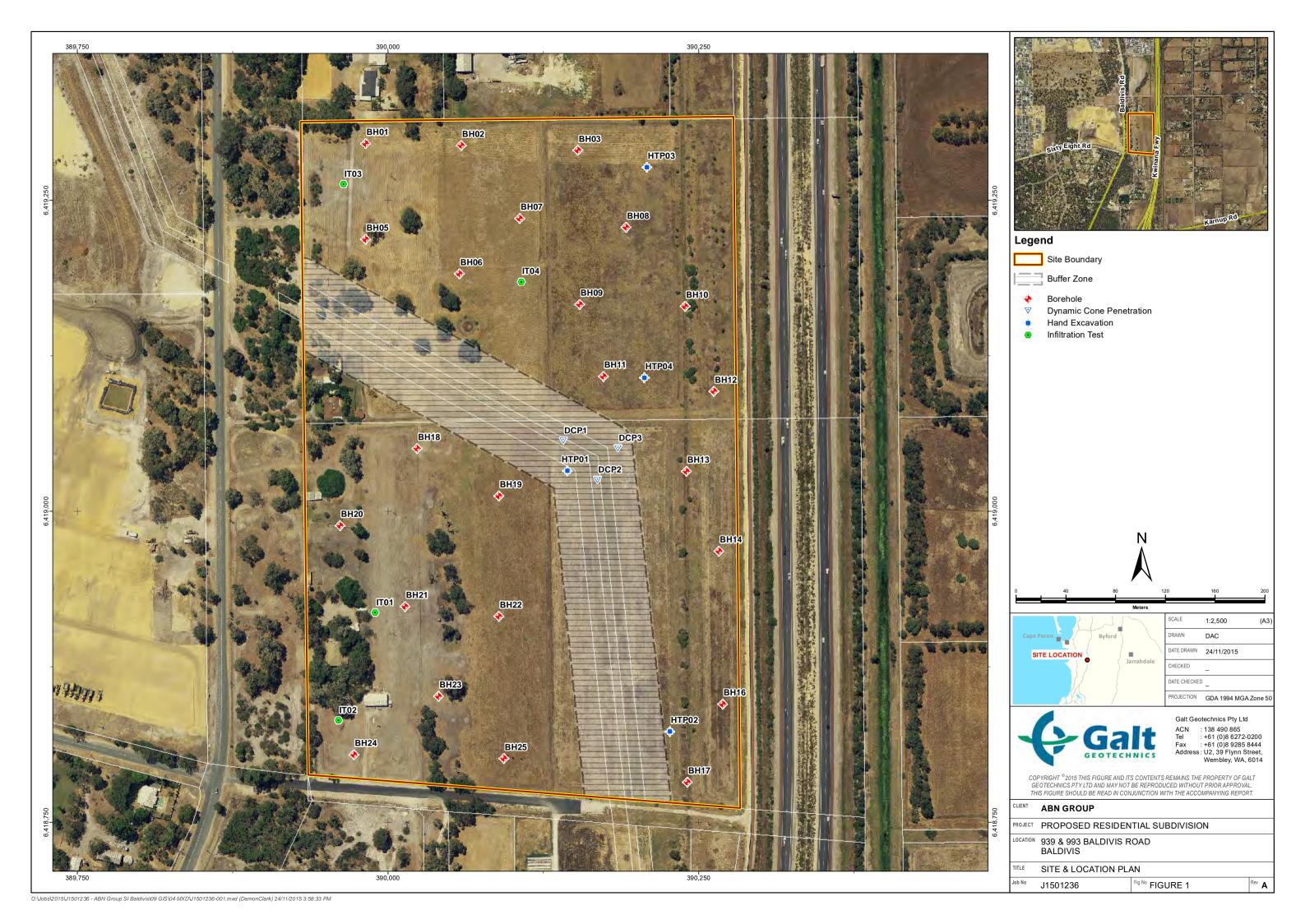
Test Name	Test Depth (m)	Depth to Groundwater (m)	Sand Thickness(m)	Organic Clay Thickness (m)	Reason for Termination	Stratigraphy ²
BH01	2.5	2.2	>2.5	Not Present		CAND
BH02	2.5	1.9	>2.5	Not Present	Target depth	SAND
BH03	2.5	Not Observed ¹	NE ¹	0.5	Taiget deptii	Organic CLAY overlying Silty CLAY
BH04			Not undertaken o	due to access cons	straints	
BH05	2.5	2.3	>2.5	Not Present		SAND
ВН06	2.5	1.4	>2.5	Not Present		SAND
BH07	2.5	Not Observed	0.5	Not Present		SAND overlying Sandy CLAY/Clayey SAND
BH08	2.5	Not Observed	NE	0.4		Organic CLAY overlying
BH09	2.5	Not Observed	NE	0.4	Target denth	CLAY
BH10	1.5	0.0	NE		Target depth	CLAY
BH11	2.5	Not Observed	NE	0.4		Organic CLAY overlying
BH12	2.5	Not Observed	NE	0.5		CLAY
BH13	1.5	0.0	NE	0.6		CLAY
BH14	2.5	Not Observed	NE	0.3		Organic CLAY overlying CLAY
BH15			Not undertaken o	due to access cons	straints	
BH16	2.5	Not Observed	NE	0.5		Organic CLAY overlying Silty CLAY
BH17	1.5	0.0	NE			Silty CLAY
BH18	2.5	1.7	>2.5	Not Present		FILL: SAND overlying SAND
BH19	2.5	2.4	1.0	Not Present		SAND overlying Clayey SAND/Sandy CLAY
BH20	2.5	Not Observed	>2.5	Not Present	Target depth	CAND
BH21	2.5	1.8	>2.5	Not Present		SAND
BH22	2.5	2.5	1.5	Not Present		SAND overlying Clayey SAND
BH23	2.5	2.0	>2.5	Not Present		CAND
BH24	2.5	1.5	>2.5	Not Present		SAND
BH25	2.5	Not Observed	1.4	Not Present		SAND overlying Sandy CLAY

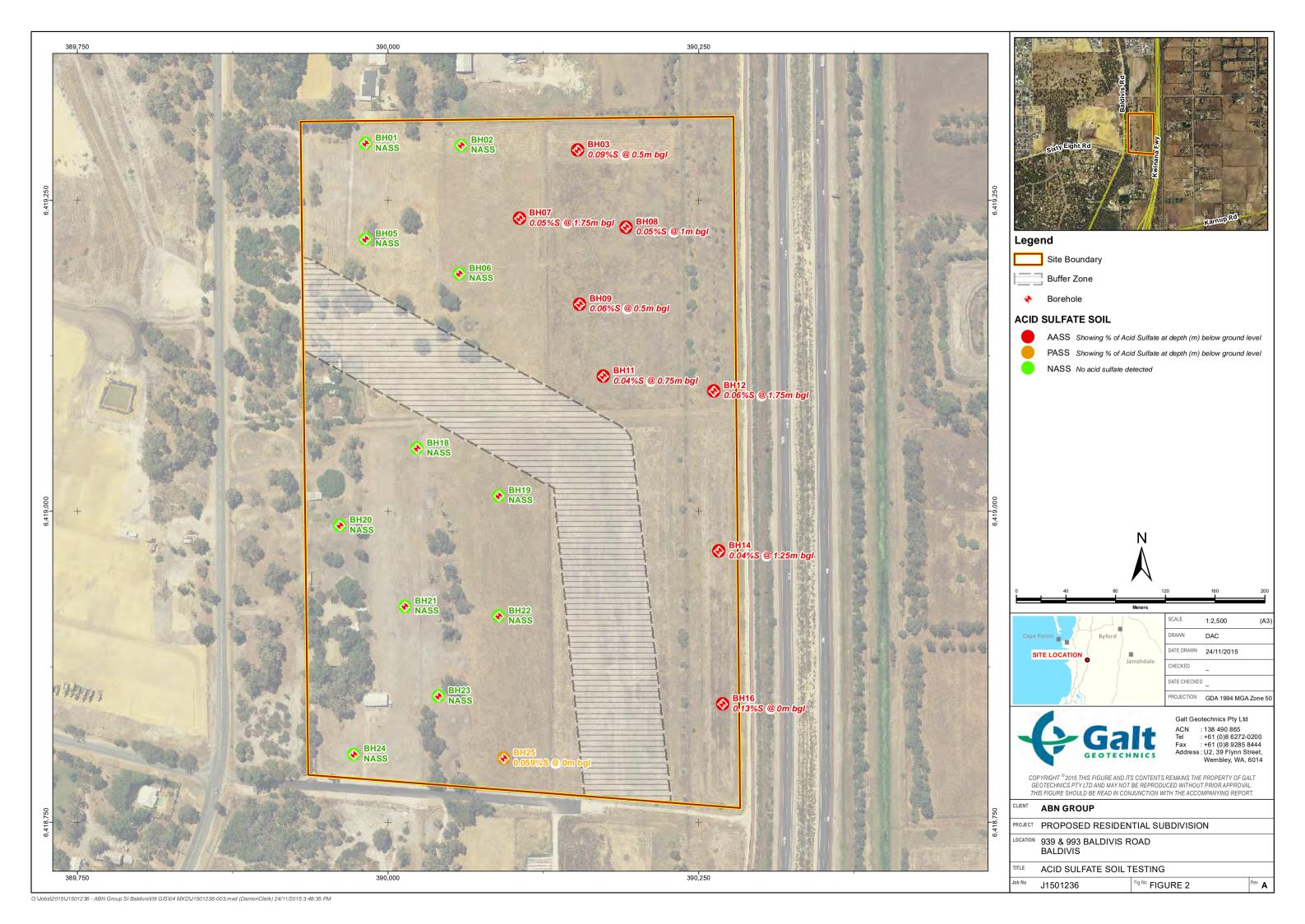
Notes: 1. Not observed within borehole, noting boreholes were likely not left open long enough water to permeate through

Table A2: Acid Sulfate Soil Test Results

Sample Location Assessment		Soil Description			 *	ate					>	uo
		·	Αď	bH _{fox}	nH nH	Reaction Rate	bH KCI	ТАА	ScR	ANC	ANGE Net Acidity	ASS Classification
Assessmen	mBGL units units units		_		1 -	LMHXV	pH units	%S	%S	%S	%S	∢
	t Criteria		4	4	1	NV	NV	0.03	0.03	NV	0.03	NV
	0.00	SAND: fine to coarse grained, sub-angular to sub-	6.6	4.0	2.6	M	5.8	<0.02	<0.005		<0.02	NASS
_	0.25	rounded, grey, trace rootlets, trace organics	6.2	3.9	2.3	L						
_	0.50 0.75		6.0 5.9	4.1 4.2	1.9 1.7	L L						
	1.00		5.7	4.2	1.5	L						
BH01	1.25		5.6	4.3	1.3	L						
	1.50		5.5	4.4	1.1	L						
_	1.75		5.5	4.2	1.3	L						
_	2.00		5.7	4.5	1.2	L						
-	2.25		5.8 5.7	4.6 4.7	1.2	L L						
	0.00	SAND: fine to coarse grained, sub-angular to sub-	5.3	3.7	1.6	M						
	0.25	rounded, grey, trace rootlets, trace organics	5.3	3.9	1.4	L						
	0.50		5.3	4.0	1.3	М						
	0.75		5.2	3.8	1.4	M						
D1100	1.00		5.7	4.4	1.3	L						
BH02	1.25 1.50		5.8 5.9	4.5 4.5	1.3 1.4	L L						
_	1.75		6.2	4.5	1.7	L	• • •		• • •		• • •	•••
	2.00		6.0	4.5	1.5	L						
	2.25		6.2	4.4	1.8	L						
	2.50		6.6	4.5	2.1	М	5.9	<0.02	<0.005		<0.02	NASS
	0.00	CLAY: medium plasticity, 70-80% fines, dark	4.9 4.9	2.6	2.3	V						
_	0.25	0.50 with some organics, trace rootlets		3.6	1.3	V						
_	0.50			2.1	2.8	V H	4.7	0.09	<0.005		0.09	AASS
_	1.00		4.9 4.9	2.4	2.7	L						
BH03	1.25		4.9	2.6	2.3	M						
	1.50		4.9	4.4	0.5	L						
	1.75	Silty CLAY: medium plasticity, 80% fines, pale grey-	4.8	4.8	0.0	L						
_	2.00	brown, with some fine to medium grained sand	4.8	4.6	0.2	L						
_	2.25		4.7	4.6	0.1	L						
	2.50 0.00	SAND: fine to coarse grained, sub-angular to sub-	4.7 6.1	4.4 4.9	0.3 1.2	L M			• • • •		• • •	
_	0.00	rounded, grey, trace rootlets, trace organics	6.1	4.7	1.4	H						
	0.50		5.9	5.0	0.9	М						
	0.75		6.0	5.1	0.9	L						
	1.00		6.0	5.0	1.0	L						
BH05	1.25		6.1	5.0	1.1	L						
-	1.50 1.75		5.9 5.8	4.9 4.9	1.0 0.9	L						
-	2.00		5.8	4.9	1.8	L L	5.6	<0.02	<0.005		<0.02	NASS
	2.25		5.7	4.9	0.8	L						
	2.50		5.7	4.7	1.0	L						
	0.00	SAND: fine to coarse grained, sub-angular to sub-	5.3	4.2	1.1	4.2						
	0.25	rounded, grey, trace rootlets, trace organics	5.4	3.6	1.8	3.6						
-	0.50		5.3	3.4	1.9	3.4	5.5	<0.02	<0.005		<0.02	NASS
-	0.75 1.00		5.4 5.9	3.8 4.1	1.6 1.8	3.8 4.1					• • •	• • •
BH06	1.25		6.0	4.1	1.7	4.1						
	1.50		6.0	4.4	1.6	4.4						
	1.75		6.2	4.6	1.6	4.6						
	2.00		6.1	4.7	1.4	4.7						
	2.25		6.1 6.1	4.7 4.7	1.4 1.4	4.7 4.7						

		Field Observations			I		Lab pH		CR	S		-
Samp	ile ID	Soil Description	рН _f	pH _{fox}	pH _f - pH _{fox}	Reaction Rate	pH _{KCI}	ТАА	S _{CR}	ANCE	Net Acidity	ASS Classification
Location	Depth/ mBGL		pH units	pH units	pH units	LMHXV	pH units	%S	%S	%S	%S	<
Assessmer	nt Criteria		4	4	1	NV	NV	0.03	0.03	NV	0.03	NV
	0.00	SAND: fine to coarse grained, sub-angular to sub-	4.5	3.6	0.9	M						
	0.25	rounded, brown-grey, trace rootlets, trace organics, trace low plasticity fines	4.9	4.1	0.8	М						
-	0.50	Sandy CLAY/Clayey SAND: medium plasticity, dark	4.9	3.9	1.0	H						
-	0.75	grey mottled pale brown, 40-60% fines, fine to coarse grained sand	5.0	3.8 4.0	1.2	H			• • •			
BH07	1.00 1.25	- Source Surie	4.9 5.6	4.0	0.9 1.5	H M		• • •				
-	1.50	_	5.0	3.7	1.4	L			•••			• • •
-	1.75	_	5.1	3.7	1.4	L	4.9	0.05	<0.005		0.05	AASS
-	2.00	-	4.9	3.5	1.4	L						
-	2.25	-	4.8	3.7	1.1	L		• • •				
	2.50	-	5.0	3.7	1.3	L						
	0.00	Organic CLAY: medium plasticity, dark brown, with	5.5	2.5	3.0	V						
-	0.25	some fine to coarse grained sand, with some organics, trace rootlets	5.0	2.6	2.4	X						
	0.50	Silty CLAY: high plasticity, grey mottled brown,	5.2	2.8	2.4	Н						
	0.75	trace fine to coarse grained sand, trace organics	5.3	2.6	2.7	Н						
	1.00		5.5	2.3	3.2	Н	4.7	0.05	<0.005		0.05	AASS
BH08	1.25		5.3	2.4	2.9	L						
	1.50		5.1	2.4	2.7	L						
	1.75		5.0	4.3	0.7	L						
	2.00		4.9	3.0	1.9	L						
	2.25		4.9	3.2	1.7	L						
	2.50		4.8	4.6	0.2	L						
	0.00	Organic CLAY: medium plasticity, dark brown, with	5.7	3.7	2.0	Н						
0.25		some fine to coarse grained sand, with some organics, trace rootlets	5.4	3.7	1.7	Н						
	0.50	Clayey/Silty SAND: fine to medium grained, sub-	5.0	2.7	2.3	Н	4.9	0.06	<0.005		0.06	AASS
	0.75	angular to sub-rounded, dark grey mottled brown,	5.6	3.3	2.3	M						
BH09	1.00	low to medium plasticity fines	5.7	3.5	2.2	L						
	1.25	la sussina finan anatom hannaina Cilta CLAV	5.9	4.4	1.5	L						
-	1.50	Increasing fines content, becoming Silty CLAY, with some sand	5.4	4.4	1.0	L						
	1.75	with some sand	5.7 5.3	4.8 5.0	0.9	L					• • •	
	2.00	_	5.6	4.9	0.3	L						
-	2.50	_	5.9	5.2	0.7	L		• • •				
	0.00	Organic CLAY: medium plasticity, dark brown, with	7.2	3.4	3.8	V						
_	0.25	some fine to coarse grained sand, with some organics, trace rootlets	7.2	3.3	3.9	H						
	0.50	Silty CLAY: high plasticity, dark grey, trace fine	7.2	3.2	4.0	Н						
	0.75	grained sand	7.2	3.2	4.0	Н	5	0.04	<0.005		0.04	AASS
	1.00		7.2	3.3	3.9	М						
BH11	1.25	1	7.2	3.4	3.8	М						
	1.50	1	7.2	3.4	3.8	М						
Ī	1.75		7.1	3.4	3.7	М						
Ī	2.00		7.1	3.7	3.4	L						
	2.25		7.1	3.8	3.3	L						
	2.50		7.1	3.9	3.2	L						
	0.00	Organic CLAY: medium plasticity, dark brown, with	7.2	4.7	2.5	Х						
	0.25	some fine to coarse grained sand, with some organics, trace rootlets	7.2	4.6	2.6	Н						
_	0.50	Sandy CLAY: high plasticity, dark grey, fine to	7.2	4.5	2.7	L						
-		coarse grained sand	7.2 7.2	4.3	2.9	Н						
-	0.75	coarse grained sand		4.3	2.9	M						
RH12	1.00					t t	T. Control of the Con	I .	The second secon	1		
BH12	1.00 1.25		7.2	4.4	2.8	L						
BH12	1.00 1.25 1.50		7.2 7.2	4.5	2.7	L						
BH12	1.00 1.25 1.50 1.75		7.2 7.2 7.2	4.5 4.2	2.7 3.0	L L						
BH12	1.00 1.25 1.50		7.2 7.2	4.5	2.7	L						


		Field Observations					Lab pH		CR	S		
Sample ID		Soil Description		pH _{fox}	pH _f - pH _{fox}	Reaction Rate	pH _{KCI}	ТАА	S _{CR}	ANCE	Net Acidity	ASS Classification
Location	Depth/ mBGL		pH units	pH units	pH units	LMHXV	pH units	%S	%S	%S	%S	∢
Assessme			4	4	1	NV	NV	0.03	0.03	NV	0.03	NV
	0.00	Organic CLAY: medium plasticity, fines, dark brown, with some fine to coarse grained sand,	5.6	1.8	3.8	Х						
	0.25	with some organics, trace rootlets	5.3	1.5	3.8	V						
	0.50	Silty CLAY: high plasticity, grey mottled brown,	5.7	1.9	3.8	Н						
	0.75	trace fine to coarse grained sand	5.8	2.0	3.8	М						
BH14	1.00		5.2	2.2	3.0	L	4.0	0.04			0.04	
_	1.25 1.50		5.0 5.0	2.1	2.9 3.0	L L	4.8	0.04	<0.005		0.04	AASS
	1.75		5.1	2.1	3.0	L						
	2.00		5.2	2.2	3.0	L						
	2.25		5.2	1.9	3.3	L						
	2.50	Construction to the state of th	5.5	2.1	3.4	L						
	0.00	Organic CLAY: medium plasticity, dark brown, with some fine to coarse grained sand, with some organics, trace rootlets	6.1	2.9 3.8	3.2 2.3	V H	4.6	0.13	<0.005		0.13	AASS
-	0.50	Silty CLAY: high plasticity, grey mottled brown,	5.6	3.9	1.7	Н						
-	0.75	trace fine to medium grained sand	5.6	4.0	1.6	Н						
BH16	1.00		6.1	4.2	1.9	Н						
вито	1.25		6.1	4.9	1.2	M						
	1.50		6.5	4.6	1.9	M						
	2.00		6.5 7.0	4.7 4.8	1.8 2.2	M H						
-	2.25		7.0	4.8	2.2	L						
	2.50		7.1	5.1	2.0	L						
	0.00	FILL: SAND, fine to coarse grained, sub-angular to	6.1	3.9	2.2	L						
	0.25	sub-rounded, grey, trace rootlets, trace organics	6.1	3.9	2.2	L						
-	0.50	SAND: fine to coarse grained, sub-angular to sub-	6.4	3.7	2.7	L						
-	0.75 1.00	rounded, brown-grey	6.5 6.5	3.6 3.8	2.9 2.7	L						
BH18	1.25		6.3	3.6	2.7	L L						• • •
21110	1.50		6.2	3.4	2.8	L						
-	1.75		6.3	3.2	3.1	L						
	2.00		6.2	3.1	3.1	L	5.8	<0.02	<0.005		<0.02	NASS
-	2.25		6.4	3.3	3.1	L						
	2.50 0.00	SAND: fine to coarse grained, sub-angular to sub-	6.4 6.1	3.5 2.5	2.9 3.6	L M						
	0.00	rounded, dark grey, trace rootlets, trace low	6.0	2.3	3.7	M	5.4	<0.02	<0.005		<0.02	NASS
-	0.50	plasticity fines	6.2	3.7	2.5	M						
	0.75		6.2	4.4	1.8	М						
	1.00	Clayey SAND/Sandy CLAY: medium plasticity fines,	6.3	3.3	3.0	L						
BH19	1.25	fine to coarse grained sand, dark grey	6.2	3.7	2.5	L						
-	1.50 1.75		6.2	3.4 3.2	2.8 3.0	L						
-	2.00		6.3	3.4	2.9	L						
-	2.25		6.1	3.3	2.8	L						
•	2.50		5.8	3.5	2.3	L						
Ţ	0.00	SAND: fine to coarse grained, sub-angular to sub-	5.6	3.0	2.6	М						
	0.25	rounded, grey, trace rootlets, trace low plasticity fines	5.6	2.8	2.8	M						
-	0.50 0.75	-	5.6 5.6	2.4 2.4	3.2 3.2	M L						
	1.00		5.7	2.4	3.2	L						
BH20	1.25		5.6	2.4	3.2	L						
	1.50		5.9	2.6	3.3	L	5.7	<0.02	<0.005		<0.002	NASS
	1.75		5.6	2.5	3.1	L						
Г	2.00	I and the second	5.6	2.6	3.0	L		1		I .	I	
	2.00		5.8	2.7	3.1	L						•••



		Field Observations		I			Lab pH		CR	S		
Samp	ole ID	Soil Description	PH _{fox} PH _{fox} PH _{fox} PH _{fox} TAA TAA Solution		ANCE	Net Acidity	ASS Classification					
Location	Depth/ mBGL		pH units	pH units	pH units	LMHXV	pH units	%S	%S	%S	%S	₫
Assessmer	nt Criteria		4	4	1	NV	NV	0.03	0.03	NV	0.03	NV
	0.00	SAND: fine to coarse grained, sub-angular to sub-	5.3	4.0	1.3	М						
	0.25	rounded, grey, trace rootlets, trace organics, trace low plasticity fines	5.3	3.8	1.5	L						
_	0.50 0.75	low plasticity files	5.3 5.5	3.8 3.4	1.5 2.1	L						
	1.00		5.5	3.2	2.3	L						
BH21	1.25		5.5	3.1	2.4	L						
	1.50		5.5	3.3	2.2	L						
	1.75		5.6	3.3	2.3	L						
-	2.00		5.7	3.3	2.4	L			٠			NACC
_	2.25 2.50		5.8 5.7	3.1 3.3	2.7	L L	5.9	<0.02	<0.005		<0.02	NASS
	0.00	SAND: fine to coarse grained, sub-angular to sub-	5.6	4.1	1.5	Н						
-	0.25	rounded, dark grey, trace rootlets, trace fines	6.0	3.5	2.5	Н						
	0.50		5.8	3.3	2.5	М						
	0.75		5.9	3.3	2.6	M						
51122	1.00		5.9	3.3	2.6	L						
BH22	1.25 1.50	Clayey SAND: fine to coarse grained, sub-angular	6.0	3.4 3.4	2.6 2.9	L						
-	1.75	to sub-rounded, grey, medium plasticity fines	5.7	3.4	2.6	L						• • •
_	2.00		6.1	2.8	3.3	L	5.5	<0.02	<0.005		<0.02	NASS
_	2.25		5.7	3.1	2.6	L						
-	2.50		6.0	3.0	3.0	L						
	0.00	SAND: fine to coarse grained, sub-angular to sub-	5.4	4.5	0.9	М						
	0.25	rounded, dark grey, trace rootlets, trace fines	5.3	4.2	1.1	M						
	0.50		5.2	3.9	1.3	M .						
_	0.75		5.1 5.0	3.8 3.7	1.3 1.3	L L	5.3	···	<0.005		<0.02	NACC
BH23	1.00 1.25		5.0	3.7	1.3	L		<0.02				NASS
D1123	1.50		5.2	3.9	1.3	L						
-	1.75		5.1	4.0	1.1	L						
-	2.00		5.1	3.9	1.2	L						
	2.25		5.0	4.0	1.0	L						
	2.50		5.2	4.1	1.1	L						
	0.00	SAND: fine to coarse grained, sub-angular to sub-rounded, dark grey, trace rootlets, trace organics,	5.9	2.9	3.0	M						
_	0.25 0.50	trace low plasticity fines	6.0 6.1	3.4 3.6	2.6 2.5	M L						
_	0.75	,	6.1	3.0	2.9	L						
_	1.00		6.2	3.6	2.6	L						
BH24	1.25		6.2	3.3	2.9	L						
	1.50		6.3	3.4	2.9	L						
	1.75		6.3	3.2	3.1	L	5.9	<0.02	<0.005		<0.02	NASS
	2.00		6.6	3.4	3.2	L						
_	2.25 2.50		6.3 6.5	3.3 3.4	3.0	L L						
	0.00	SAND: fine to coarse grained, sub-angular to sub-	5.5	1.7	3.8	V	5.3	<0.02	0.059		0.059	PASS
	0.25	rounded, grey, trace rootlets, trace organics, trace	5.4	1.9	3.5	V						
-	0.50	fines	5.5	2.4	3.1	Н						
Ī	0.75		5.4	2.5	2.9	Н						
	1.00		5.6	3.0	2.6	Н						
BH25 1.25			5.6	3.9	1.7	M						
RH72		Sandy CLAY: fine to coarse grained, sub-angular to			4 -							_
RH72	1.50		5.6	4.2	1.4	M						
RH72	1.50 1.75	Sandy CLAY: fine to coarse grained, sub-angular to sub-rounded, dark grey, medium plasticity fines	5.3	4.3	1.0	L						
вн25	1.50											

Figures

Appendix A: Site Photographs

Photograph 1: Typical surface cover across the site. Western portion of site looking east.

Photograph 2: South of site looking north west.

Photograph 3: Shrinkage cracks in Organic Clay material in east of site

Photograph 4: Drain in east of the site, looking north

Appendix B: Borehole Reports

EXPLANATORY NOTES TO BE READ WITH BOREHOLE AND TEST PIT REPORTS

Existing Excavation

METHOD	OF DRILLING OR EXCAVATION	l			
AC	Air Core	Е	Excavator	PQ3	PQ3 Core Barrel
AD/T	Auger Drilling with TC-Bit	EH	Excavator with Hammer	PT	Push Tube
AD/V	Auger Drilling with V-Bit	HA	Hand Auger	R	Ripper
AT	Air Track	HMLC	HMLC Core Barrel	RR	Rock Roller
В	Bulldozer Blade	HQ3	HQ3 Core Barrel	SON	Sonic Rig
ВН	Backhoe Bucket	N	Natural Exposure	SPT	Driven SPT
СТ	Cable Tool	NMLC	NMLC Core Barrel	WB	Washbore

Push Probe

DT SUPPORT

T Timbering

Diatube

PENETRATION EFFORT (RELATIVE TO THE EQUIPMENT USED)

VE	Very Easy	Ε	Easy	F	Firm
Н	Hard	VH	Very Hard		

WATER

•	Water Inflow	•	Water Level

	water Loss (complete)
\triangleleft	Water Loss (partial)

SAMPLING AND TESTING

WIAIL FII	IG AID ILSTIIIG		
В	Bulk Disturbed Sample	Р	Piston Sample
BLK	Block Sample	PBT	Plate Bearing Test
С	Core Sample	U	Undisturbed Push-in Sample
CBR	CBR Mould Sample		U50: 50 mm diameter
D	Small Disturbed Sample	SPT	Standard Penetration Test
ES	Environmental Soil Sample		Example: 3, 4, 5 N=9
EW	Environmental Water Sample		3,4,5: Blows per 150 mm
G	Gas Sample		N=9: Blows per 300 mm after
HP	Hand Penetrometer		150 mm seating interval
LB	Large Bulk Disturbed Sample	VS	Vane Shear; P = Peak
M	Mazier Type Sample		R = Remoulded (kPa)
MC	Moisture Content Sample	W	Water Sample

ROCK CORE RECOVERY

TCR = Total Core Recovery (%)
$$= \frac{CRL}{TCL} \times 100$$
SCR = Solid Core Recovery (%)
$$= \frac{CCR}{TCL} \times 100$$

RQD = Rock Quality Designation (%)
$$=\frac{ALC>100}{TCL}\times100$$

ALC>100 Total Length of Axial Lengths of Core Greater than 100 mm Long

METHOD OF SOIL DESCRIPTION BOREHOLE AND TEST PIT REPORTS

GRAPHIC LOG & UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) SYMBOLS

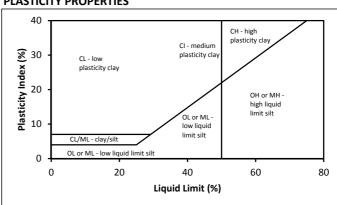
Graphic	USCS	Soil Name
		FILL (various types)
000		COBBLES
XX		BOULDERS
0000	GP	GRAVEL (poorly graded)
3000	GW	GRAVEL (well graded)
\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GC	Clayey GRAVEL
	SP	SAND (poorly graded)
7.77.77 7.77.77 7.77.77	SW	SAND (well graded)
	SC	Clayey SAND

303/311	363) 311/18023				
Graphic	USCS	Soil Name			
× · · · × · · · · · · · · · · · · · · ·	SM	Silty SAND			
H >	ML	SILT (low liquid limit)			
× × × × × × × × × × × × × × × × × × ×	МН	SILT (high liquid limit)			
6:5:5:5 6:5:5:5 6:5:5:5	CL	CLAY (low plasticity)			
	CI	CLAY (medium plasticity)			
:	СН	CLAY (high plasticity)			
25 25 25 5 25 25 25 25 25	OL	Organic SILT (low liquid limit)			
0000	ОН	Organic SILT (high liquid limit)			
33	Pt	PEAT			

RESISTANCE TO EXCAVATION

Symbol	Term	Description
VE	Very easy	
E	Easy	
F	Firm	
Н	Hard	
VH	Very hard	

All resistances are relative to the selected method of excavation


SOIL CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil descriptions are based on AS1726-1993, Appendix A. Material properties are assessed in the field by visual/tactile methods in combination with field testing techniques (where used).

PARTICLE	SIZE
----------	------

Soil	Name	Particle Size (mm)
BOU	LDERS	>200
COE	BLES	63 to 200
	Coarse	20 to 63
GRAVEL	Medium	6 to 20
	Fine	2 to 6
	Coarse	0.6 to 2.0
SAND	Medium	0.2 to 0.6
	Fine	0.075 to 0.2
FINES	SILT	0.002 to 0.075
TINES	CLAY	<0.002

MOISTURE CONDITION AS1726-1993

Symbol	Term	Description
D	Dry	Sands and gravels are free flowing. Clays and silts may be brittle or friable and powdery.
М	Moist	Soils are darker than in the dry condition and may feel cool. Sands and gravels tend to cohere.
W	Wet	Soils exude free water. Sands and gravels tend to cohere.

CONSISTENCY AND DENSITY

		Undrained Shear		DCP blows
Symbol	Term	Strength (kPa)	SPT "N"	per 100 mm
VS	Very Soft	0 to 12	0 to 2	<1
S	Soft	12 to 25	2 to 4	<1
F	Firm	25 to 50	4 to 8	1 to 2
St	Stiff	50 to 100	8 to 15	3 to 4
VSt	Very Stiff	100 to 200	15 to 30	5 to 10
Н	Hard	>200	>30	>10

AS1726-1993 and HB160-2006

		Density		DCP blows	PSP Blows							
Symbol	Term	Index (%)	SPT "N"	per 100 mm	per 300 mm							
VL	Very Loose	<15	0 to 4	<1	0 to 2							
L	Loose	15 to 35	4 to 10	1 to 2	2 to 6							
MD	Medium Dense	35 to 65	10 to 30	2 to 3	6 to 8							
D	Dense	65 to 85	30 to 50	4 to 8	8 to 15							
VD Very Dense >85 >50 >8 >15												
Note: PSP	Note: PSP correlations only valid to 450 mm depth											

Consistency and density may also be inferred from excavation performance and material behaviour.

Sheet 1 OF 1

Job Number: J1501236 Easting: 389982 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419296 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW Location:

		Dril	ling		Samplin	g				Field Material Desc	riptic	n	
METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —		ES-BH01/0.00- BH01-1					SAND: fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace organics			No density testing conducted below 0.9 m
			-		ES-BH01/0.25- BH01-1					No rootlets, no organics		MD	
			0.5 —		ES-BH01/0.50- BH01-1					No routers, no organics	D	D	
			-		ES-BH01/0.75- BH01-1							D	
			1.0 —		ES-BH01/1.00- BH01-1								
MA			-		ES-BH01/1.25- BH01-1				SP				
			1.5 —		ES-BH01/1.50- BH01-1			• •			М		
			-		ES-BH01/1.75- BH01-1					Becoming brown, trace low plasticity fines			
		•	2.0 —		ES-BH01/2.00- BH01-1					Section of Section (reasons) in the			
12-21			-		ES-BH01/2.25- BH01-1						W		
2013-02-21 Pf; GALT 1.01 2013-02-21			-2.5 - -		ES-BH01/2.50- BH01-1					Hole terminated at 2.50 m Target depth Groundwater encountered at 2.2m			
01 2013-02-21 F1]			-3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390059 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419294 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g	Field Material Description								
METHOD	PENETRATION RESISTANCE	WATER	٥٥	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
			0.0 —		ES-BH02/0.00- BH02-1					SAND: fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace organics			No density testing conducted below 1.8 m		
			-		ES-BH02/0.25- BH02-1										
			0.5 —		ES-BH02/0.50- BH02-1						D				
			-		ES-BH02/0.75- BH02-1							MD			
			1.0 —		ES-BH02/1.00- BH02-1					Becoming dark grey, no rootlets, no organics					
MA			-		ES-BH02/1.25- BH02-1				SP		М				
			1.5 —		ES-BH02/1.50- BH02-1					Trace low plasticity fines, becoming silty					
		_	-		ES-BH02/1.75- BH02-1										
			2.0 —		ES-BH02/2.00- BH02-1						w				
5			-		ES-BH02/2.25- BH02-1										
01 2013-02-21 Prj. GALT 1,01 2013-02-21			2.5 - -		ES-BH02/2.50- BH02-1					Hole terminated at 2.50 m Target depth Groundwater encountered at 1.9m					
.013-02-z1 Prj. v										Sketch & Other Observations					

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 390153 m Contractor: Galt Date: ABN Group Client: Northing: 6419290 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	ıg				Field Material Desc	•		
METHOD	PENETRATION RESISTANCE	WATER	ے ت	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —		ES-BH03/0.00- BH03-1			77 77 7 7 77 77 77 77 7		Organic CLAY: medium to high plasticity, dark brown, with some organics, trace rootlets			No density testing conducted below 0.9 m
			-		ES-BH03/0.25- BH03-1			5 85 85 5 85 85 5 85 85 5 85 85 5 85 85 8	ОН			- 0	
			0.5 —		ES-BH03/0.50- BH03-1					CLAY: high plasticity, dark grey mottled brown, trace sand and organics		F - St	
			-		ES-BH03/0.75- BH03-1			- - -					
			1.0 —		ES-BH03/1.00- BH03-1			 					
MA			- -		ES-BH03/1.25- BH03-1						М		
			1.5 —		ES-BH03/1.50- BH03-1				CH				
			-		ES-BH03/1.75- BH03-1								
			2.0 —		ES-BH03/2.00- BH03-1								
			-		ES-BH03/2.25- BH03-1			 					
,			2.5 - - -		ES-BH03/2.50- BH03-1					Hole terminated at 2.50 m Target depth Groundwater not encountered			
	Sketch & Other Observations												

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390238 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419289 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW Location:

		Dril	ling		Samplin	g							┪	
METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —		ES-BH05/0.00- BH05-1					SAND: fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace organics			No density testing conducted below 0.9 m	-
			0.5—		ES-BH05/0.25- BH05-1 ES-BH05/0.50- BH05-1					No rootlets, no organics	D	MD - D		-
			1.0—		ES-BH05/0.75- BH05-1 ES-BH05/1.00- BH05-1					Pale grey				
H			1.5 —		ES-BH05/1.25- BH05-1 ES-BH05/1.50- BH05-1				SP	Becoming brown with depth	М			-
			-		ES-BH05/1.75- BH05-1									-
			2.0 —		ES-BH05/2.00- BH05-1						141			-
-02-21			-		ES-BH05/2.25- BH05-1						W			-
ZU 13-02-ZI FIJ; GALT 1:01 ZU 13-02-ZI		•	2.5 - - -		ES-BH05/2.50- BH05-1					Hole terminated at 2.50 m Target depth Groundwater encountered at 2.3m				-
	Sketch & Other Observations													

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390058 m Contractor: Galt Date: 23/10/2015 Client: ABN Group Northing: 6419191 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g	Field Material Description						
METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 — — — — — — — — — — — — — — — — — —		ES-BH06/0.00- BH06-1 ES-BH06/0.25- BH06-1 ES-BH06/0.50- BH06-1 ES-BH06/0.75- BH06-1					SAND: fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace organics	D M	MD - D	No density testing conducted below 0.9 m
MA		_	1.5 —		ES-BH06/1 00- BH06-1 ES-BH06/1 25- BH06-1 ES-BH06/1.50- BH06-1 ES-BH06/1.75- BH06-1				SP	Dark grey, no rootlets, no organics	w		
.01 2013-02-21 Ptj: GALT 1.01 2013-02-21			2.0		ES-BH06/2.00- BH06-1 ES-BH06/2.25- BH06-1 ES-BH06/2.50- BH06-1			· · · · · · · · · · · · · · · · · · ·		Hole terminated at 2.50 m Target depth Groundwater encountered at 1.4m			-
01 2013-02-21 FT			-3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390106 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419236 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	lling		Samplin	g	·						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
01 2013-02-21 Pty GALT 1,01 2013-02-21 MA			0.0 —		ES-BH07/0.00- BH07-1 ES-BH07/0.25- BH07-1 ES-BH07/0.50- BH07-1 ES-BH07/1.00- BH07-1 ES-BH07/1.00- BH07-1 ES-BH07/1.25- BH07-1 ES-BH07/1.50- BH07-1 ES-BH07/1.50- BH07-1 ES-BH07/1.75- BH07-1 ES-BH07/1.75- BH07-1 ES-BH07/1.00- BH07-1 ES-BH07/1.00- BH07-1 ES-BH07/1.00- BH07-1				SP SC-CI	SAND: fine to coarse grained, sub-angular to sub-rounded, brown-grey, trace rootlets, trace organics, trace low plasticity fines Sandy CLAY/Clayey SAND: medium plasticity, dark grey mottled pale brown, 40-60% fines, fine to coarse grained sand Hole terminated at 2.50 m Target depth	М	MD L	No density testing conducted below 1.0 m
01 20	Sketch & Other Observations												

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390192 m Contractor: Galt Date: 23/10/2015 Client: ABN Group Northing: 6419228 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW Location:

		Dril	ling		Samplin	g				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0		ES-BH08/0.00- BH08-1 ES-BH08/0.25- BH08-1			25 25 2 25 25 25 25 25 25 25 25 2 25 25 2	ОН	Organic CLAY: medium to high plasticity, dark brown, with some fine to coarse grained sand, with some organics, trace rootlets	D	VS -	No density testing conducted below 0.9 m
			0.5 —		ES-BH08/0.50- BH08-1 ES-BH08/0.75-					CLAY: high plasticity, grey mottled brown, trace fine to coarse grained sand, trace organics		F - St	-
			1.0 —		BH08-1 ES-BH08/1.00- BH08-1								 - -
MA			- 1.5 —		ES-BH08/1.25- BH08-1 ES-BH08/1.50- BH08-1 B(BH08-01)			-	СН		М		- - -
			2.0		ES-BH08/1.75- BH08-1 ES-BH08/2.00-			 		Becoming pale grey-brown			
02-21			- - -		BH08-1 ES-BH08/2.25- BH08-1								
01 2013-02-21 Prj: GALT 1.01 2013-02-21			2.5 — - -		ES-BH08/2.50- BH08-1 ES-BH08/2.75- BH08-1			 		Hole terminated at 2.80 m			
2013-02-21			-3.0							Target depth Groundwater not encountered Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390154 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419166 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW Location:

F		Dril	ling		Samplin	g				Field Material Desc				\neg
COLFER	PENETRATION RESISTANCE	WATER	٥٤	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —		ES-BH09/0.00- BH09-1			5 25 25 5 25 25 5 25 25 2	ОН	Organic CLAY: medium plasticity, dark brown, with some fine to coarse grained sand, with some organics, trace rootlets		St	No density testing conducted below 1.8 m	
			-		ES-BH09/0.25- BH09-1			20 20 2 2 20 20						-
			0.5 —		ES-BH09/0.50- BH09-1					Clayey SAND: fine to medium grained, sub-angular to sub-rounded, dark grey mottled brown, 20-30% low to medium plasticity fines				-
			- -		ES-BH09/0.75- BH09-1			: : : : [::::::	sc			F		-
			1.0 —		ES-BH09/1.00- BH09-1				SC					-
VV			- -		ES-BH09/1.25- BH09-1						М			-
			1.5 —		ES-BH09/1.50- BH09-1					Increasing fines content, becoming Silty CLAY, with some sand		St		-
			-		ES-BH09/1.75- BH09-1									-
			2.0 —		ES-BH09/2.00- BH09-1				CI					-
02-21			-		ES-BH09/2.25- BH09-1									-
21 Prj: GALT 1.01 2013-02-			2.5 - - -		ES-BH09/2.50- BH09-1					Hole terminated at 2.50 m Target depth Groundwater not encountered				-
7 2013-02-2			-3.0-							Sketch & Other Observations				Ц

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390239 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419165 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dri	lling		Samplin	g				Field Material Desc	riptio	on	
МЕТНОБ	PENETRATION	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
MA		W // //	当 <u>美</u> 0.0	RL		OA			SU CH	CLAY: high plasticity, dark grey, trace fine to coarse grained sand, trace rootlets No rootlets Hole terminated at 1.50 m Target depth	w		Density not assessed
13-20-01-04 0-11-11-11-11-11-11-11-11-11-11-11-11-11			3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390173 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419109 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW Location:

		Dril	ling		Samplin	g				Field Material Desc	•		
METHOD	PENETRATION RESISTANCE	WATER	ے ت	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —		ES-BH11/0.00- BH11-1 ES-BH11/0.25-			77 77 77 77 77 77 77 77 77 77 77 77	ОН	Organic CLAY: medium to high plasticity, dark brown, with some fine to coarse grained sand, with some organics, trace rootlets	D		No density testing conducted below 0.9 m
			0.5—		BH11-1 ES-BH11/0.50- BH11-1					CLAY: high plasticity, dark grey, trace fine grained sand		F - St	
			-		ES-BH11/0.75- BH11-1								
MA			1.0 —		ES-BH11/1.00- BH11-1 ES-BH11/1.25-			 					
			1.5 —		BH11-1 ES-BH11/1.50- BH11-1				СН		М		
			- -		ES-BH11/1.75- BH11-1			 					
			2.0 —		ES-BH11/2.00- BH11-1			 					
		_	- 2.5		ES-BH11/2.25- BH11-1 ES-BH11/2.50-			- - - -		Hole terminated at 2.50 m			
			- - -		BH11-1					Target depth Groundwater not encountered			
			- 3.0			l	_			Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390262 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419097 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0		ES-BH12/0.00- BH12-1		2	1 47 47 57 57 5 1 57 57 57 57 5	011	Organic CLAY: medium to high plasticity, dark brown, with some fine to coarse grained sand, with some organics, trace rootlets			No density testing conducted below 0.9 m
			-		ES-BH12/0.25- BH12-1		د بر د	1	OH			F - St	-
			0.5 -		ES-BH12/0.50- BH12-1		-			CLAY: high plasticity, dark grey, fine to coarse grained sand			
			1.0 —		ES-BH12/0.75- BH12-1			- - -			М		 -
MA			-		ES-BH12/1.00- BH12-1 ES-BH12/1.25-			- - -					
			1.5—		BH12-1 ES-BH12/1.50-		-		СН				-
			-		BH12-1 ES-BH12/1.75-		-	- - -					
			2.0 —		BH12-1 ES-BH12/2.00- BH12-1		_	- - - -			М		-
			- -		ES-BH12/2.25- BH12-1								
n 2013-02-21			2.5 		ES-BH12/2.50- BH12-1					Hole terminated at 2.50 m			
.01 2013-02-21 Prj. GALT 1.01 2013-02-21			-							Target depth Groundwater not encountered			
1 2013-02-21			_3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390240 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6419032 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW Location:

MA METHOD MATER WATER 1.5 - 1.		GRAPHIC LOG NUSCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION CLAY: high plasticity, grey mottled brown, with some (10%) fine to coarse grained sand, with some organics and rootlets	MOISTURE	STRUCTURE AND ADDITIONAL OBSERVATIONS OD
0.5 — 1.0 —	0.0		CLAY: high plasticity, grey mottled brown, with some (10%) fine to		
2.5 —	1.0— B(BH13-01)	CH	No rootlets Hole terminated at 1.50 m Target depth Groundwater not encountered	w	Density not assessed
3.0	-	1 1	I .	1	1 1

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390266 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6418968 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW Location:

Drilling	Sampling		Field Material Descripti	
METANJON RESISTANCE WATER DEPTH (metres)	ACID SULPHATE SAMPLE RECOVERED	SOUL SOURCE STANDOR OF THE SOURCE STANDOR OF	ROCK MATERIAL DESCRIPTION	STRUCTURE AND ADDITIONAL OBSERVATIONS
0.0 — — — — — — — — — — — — — — — — — —	ES-BH14/0.00- BH14-1 ES-BH14/0.25- BH14-1 ES-BH14/0.50- BH14-01) ES-BH14/0.75- BH14-1 ES-BH14/1.00- BH14-1 ES-BH14/1.25- BH14-1 ES-BH14/1.50- BH14-1	Coarse grained s	nedium plasticity, dark brown, with some fine to and, with some organics, trace rootlets icity, grey mottled brown, trace fine to coarse	No density testing conducted below 0.9 m F - St
2.0	ES-BH14/2.00- BH14-1 ES-BH14/2.25- BH14-1	 	w	v
-2.5	ES-BH14/2.50- BH14-1	Hole terminated Target depth Groundwater no		

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 390269 m Contractor: Galt Date: ABN Group Client: Northing: 6418845 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	lling		Samplin	g				Field Material Desc	riptio	n	
METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —		ES-BH16/0.00- BH16-1			20 20 2 20 20 20		Organic CLAY: medium to high plasticity, dark brown, with some fine to coarse grained sand, with some organics, trace rootlets			No density testing conducted below 0.9 m
			-		ES-BH16/0.25- BH16-1			10 10 10 10 10 10 10 10 10	ОН		D	_	
			0.5 —		ES-BH16/0.50- BH16-1					CLAY: high plasticity, grey mottled brown, trace fine to medium grained sand		F	
			-		ES-BH16/0.75- BH16-1								
			1.0 —		ES-BH16/1.00- BH16-1			- <u>-</u> -					
MA			-		ES-BH16/1.25- BH16-1								
			1.5 —		ES-BH16/1.50- BH16-1			 	СН		М		
			- -		ES-BH16/1.75- BH16-1								
			2.0 —		ES-BH16/2.00- BH16-1 B(BH16-01)			- - - -		Becoming pale brown			
			- -		ES-BH16/2.25- BH16-1								
2015-02-21 F1J. GALT 1:01 2013-02-21			—2.5 — - -		ES-BH16/2.50- BH16-1					Hole terminated at 2.50 m Target depth Groundwater not encountered			
5-705-21 r.j. co			- - -3.0										
			-3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390241 m Contractor: Galt Date: 23/10/2015 ABN Group Client: Northing: 6418782 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

Drilling	0.0		ng			Field Material Desc	•		
		SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
0.	5				CI	CLAY: medium to high plasticity fines, dark grey, trace organics Hole terminated at 1.50 m Target depth Groundwater not encountered	w		Density not assessed
2.	5 —					Sketch & Other Observations			

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 390023 m Contractor: Galt Date: ABN Group Client: Northing: 6419051 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g				Field Material Desc	riptio	n	
METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —		ES-BH18/0.00- BH18-1				SP	FILL: SAND, fine to coarse grained, sub-angular to sub-rounded, gray, trace rootlets, trace organics	D	MD	No density testing conducted below 0.9 m
			-		ES-BH18/0.25- BH18-1					SAND: fine to coarse grained, sub-angular to sub-rounded, brown-grey			
			0.5 —		ES-BH18/0.50- BH18-1							VD	-
			-		ES-BH18/0.75- BH18-1						М		
			1.0 —		ES-BH18/1.00- BH18-1								-
MA			-		ES-BH18/1.25- BH18-1				SP				
		•	1.5 —		ES-BH18/1.50- BH18-1					Becoming pale grey			-
			-		ES-BH18/1.75- BH18-1						w		
			2.0 —		ES-BH18/2.00- BH18-1								
7-80			-		ES-BH18/2.25- BH18-1								
20 10-02-21 1 j. Ortel 1:01 20 10-02-21			2.5 - -		ES-BH18/2.50- BH18-1					Hole terminated at 2.50 m Target depth Groundwater encountered at 1.7m			
										Sketch & Other Observations			

Comments:

Sheet 1 OF 1

Job Number: J1501236 Easting: 390089 m Contractor: Galt Date: 23/10/2015 ABN Group Drill Rig: Client: Northing: 6419012 m Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0		ES-BH19/0.00- BH19-1 ES-BH19/0.25- BH19-1					SAND: fine to coarse grained, sub-angular to sub-rounded, dark grey, trace rootlets, trace low plasticity fines	D	VD	No density testing conducted below 0.9 m
			0.5 —		ES-BH19/0.50- BH19-1 ES-BH19/0.75-				SP			D	
			1.0 —		BH19-1 ES-BH19/1.00- BH19-1					Clayey SAND/Sandy CLAY: medium plasticity fines, fine to coarse grained sand, dark grey	M		
MA			1.5 —		ES-BH19/1.25- BH19-1 ES-BH19/1.50- BH19-1								
			2.0		ES-BH19/1.75- BH19-1 ES-BH19/2.00-				SC- CI	Increasing fines content		-	
22-21		_	- - -		BH19-1 ES-BH19/2.25- BH19-1						w		
01 2013-02-21 Prj. GALT 1.01 2013-02-21			-2.5 - - -		ES-BH19/2.50- BH19-1					Hole terminated at 2.50 m Target depth Groundwater encountered at 2.4m			
N 2013-02-21			-3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 389962 m Contractor: Galt Date: ABN Group Drill Rig: Client: Northing: 6418989 m Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	ıg				Field Material Desc	riptic	n		٦
METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —		ES-BH20/0.00- BH20-1					SAND: fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace low plasticity fines			No density testing conducted below 1.8 m	1
			-		ES-BH20/0.25- BH20-1									-
			0.5 —		ES-BH20/0.50- BH20-1					Pale grey, no rootlets, no fines	D			1
			-		ES-BH20/0.75- BH20-1							MD		
			1.0 —		ES-BH20/1.00- BH20-1									1
MA			- - -		ES-BH20/1.25- BH20-1				SP					1
			1.5 —		ES-BH20/1.50- BH20-1					Becoming brown				1
			-		ES-BH20/1.75- BH20-1						М			
			2.0 —		ES-BH20/2.00- BH20-1									
12-21			-		ES-BH20/2.25- BH20-1									-
2013-02-21 Prj. GALT 1.01 2013-02-21			-2.5 - - -		ES-BH20/2.50- BH20-1					Hole terminated at 2.50 m Target depth Groundwater not encountered				-
U1 Z013-0Z-Z1			-3.0							Sketch & Other Observations				$\frac{1}{2}$

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 390014 m Contractor: Galt Date: ABN Group Client: Northing: 6418924 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

Drilling				Sampling			Field Material Description					
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
1.01 2013-02-21 Prj. GALT 1.01 2013-02-21 MA	_	0.0		ES-BH21/0.00- BH21-1 ES-BH21/0.25- BH21-1 ES-BH21/0.50- BH21-1 ES-BH21/1.75- BH21-1 ES-BH21/1.00- BH21-1 ES-BH21/1.25- BH21-1 ES-BH21/1.50- BH21-1 ES-BH21/1.75- BH21-1 ES-BH21/1.75- BH21-1 ES-BH21/1.75- BH21-1 ES-BH21/1.75- BH21-1 ES-BH21/1.25- BH21-1 ES-BH21/1.25- BH21-1				SP	SAND: fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace organics, trace low plasticity fines No fines, no rootlets, no organics, becoming pale grey Hole terminated at 2.50 m Target depth Groundwater encountered at 1.8m	M	MD	No density testing conducted below 0.9 m
1.01 2013		-3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 390089 m Contractor: Galt Date: ABN Group Client: Northing: 6418916 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g				Field Material Desc	•		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0		ES-BH22/0.00- BH22-1					SAND: fine to coarse grained, sub-angular to sub-rounded, dark grey, trace rootlets, trace fines			No density testing conducted below 0.9 m
			-		ES-BH22/0.25- BH22-1								
			0.5 —		ES-BH22/0.50- BH22-1							MD	
			-		ES-BH22/0.75- BH22-1				SP		М		
			1.0 —		ES-BH22/1.00- BH22-1					No rootlets			
MA			-		ES-BH22/1.25- BH22-1								
			1.5 —		ES-BH22/1.50- BH22-1					Clayey SAND: fine to coarse grained, sub-angular to sub-rounded, grey, medium plasticity fines		_	
			-		ES-BH22/1.75- BH22-1			. 		Increasing fines content with depth			
			2.0 —		ES-BH22/2.00- BH22-1				sc		w		
5			-		ES-BH22/2.25- BH22-1								
01 2013-02-21 Prj. GALT 1.01 2013-02-21			2.5		ES-BH22/2.50- BH22-1			· · · · ·		Hole terminated at 2.50 m Target depth Groundwater encountered at 2.5m			
2013-0z-zı F.ı,			-3.0							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 390041 m Contractor: Galt Date: ABN Group Client: Northing: 6418851 m Drill Rig: Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g				Field Material Desc	•		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —		ES-BH23/0.00- BH23-1 ES-BH23/0.25- BH23-1					SAND: fine to coarse grained, sub-angular to sub-rounded, dark grey, trace rootlets, trace fines			No density testing conducted below 0.9 m
			0.5—		ES-BH23/0.50- BH23-1							MD	
			1.0 —		ES-BH23/0.75- BH23-1 ES-BH23/1.00- BH23-1						M		 - -
MA			- - 1.5 <i></i> -		ES-BH23/1.25- BH23-1 ES-BH23/1.50-				SP				
			- - -		ES-BH23/1.75- BH23-1					Pale grey			
			2.0 —		ES-BH23/2.00- BH23-1 ES-BH23/2.25-						w		-
11.01 2013-02-21			2.5 		BH23-1 ES-BH23/2.50- BH23-1					Hole terminated at 2.50 m Target depth Groundwater encountered at 2m			
1.01 2013-02-21 Pfj GALT 1.01 2013-02-21										Sketch & Other Observations			
2										Oneton & Other Observations			

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 389973 m Contractor: Galt Date: ABN Group Drill Rig: Client: Northing: 6418805 m Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	g				Field Material Desc	•		
METHOD	PENETRATION RESISTANCE	WATER	ے ت	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —		ES-BH24/0.00- BH24-1 B(BH24-01)					SAND: fine to coarse grained, sub-angular to sub-rounded, dark grey, trace rootlets, trace organics, trace low plasticity fines			No density testing conducted below 0.9 m
			-		ES-BH24/0.25- BH24-1								
			0.5 —		ES-BH24/0.50- BH24-1					Grey, no rootlets, no organics, no fines	 	MD	
			- -		ES-BH24/0.75- BH24-1						M		
			1.0 —		ES-BH24/1.00- BH24-1								
MA			- -		ES-BH24/1.25- BH24-1				SP				
			1.5 —		ES-BH24/1.50- BH24-1					Pale grey			1.50: Hole collapse at 1.2 m after extraction. Groundwater inferred at 1.5 m.
			-		ES-BH24/1.75- BH24-1						w		
			2.0 —		ES-BH24/2.00- BH24-1						"		
			-		ES-BH24/2.25- BH24-1								
			2.5 - - -		ES-BH24/2.50- BH24-1					Hole terminated at 2.50 m Target depth Groundwater encountered at 1.5m			
			-3.0-							Sketch & Other Observations			

Comments:

Sheet 1 OF 1

23/10/2015 Job Number: J1501236 Easting: 390093 m Contractor: Galt Date: ABN Group Drill Rig: Client: Northing: 6418801 m Eziprobe SC Logged: Project: Proposed Residential Subdivision Datum: MGA94 Zone 50 Inclination: -90° Checked Date: 24/11/2015 Location: 939 & 993 Baldivis Road, Baldivis Hole Dia: 100 mm Checked By: PCW

		Dril	ling		Samplin	ıg				Field Material Desc	riptio	n		٦
МЕТНОВ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	ACID SULPHATE SAMPLE	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0		ES-BH25/0.00- BH25-1					SAND: fine to coarse grained, sub-angular to sub-rounded, grey, trace rootlets, trace organics, trace fines			No density testing conducted below 0.9 m	-
			-		ES-BH25/0.25- BH25-1						D			
			0.5 —		ES-BH25/0.50- BH25-1					Mottled dark grey		MD		-
			-		ES-BH25/0.75- BH25-1				SP					-
			1.0 —		ES-BH25/1.00- BH25-1						M			-
MA			-		ES-BH25/1.25- BH25-1									-
			1.5 —		ES-BH25/1.50- BH25-1					Sandy CLAY: fine to coarse grained, sub-angular to sub-rounded, dark grey, medium plasticity fines				-
			-		ES-BH25/1.75- BH25-1									-
			2.0 —		ES-BH25/2.00- BH25-1				CI		W			_
			=		ES-BH25/2.25- BH25-1									
		_	2.5 - -		ES-BH25/2.50- BH25-1					Hole terminated at 2.50 m Target depth Groundwater not encountered				_
			-											-
			- 3.0							Sketch & Other Observations				٦

Comments:

Appendix C: Penetrometer Test Results

DYNAMIC CONE PENETROMETER FIELD TEST DATA (AS12896.3.2)

Client:ABN GroupJob No: J1501236Project:Proposed Residential DevelopmentDate: 23/10/2015Location:939 & 993 Baldivis Road, BaldivisEngineer: SC

Test No:	DCP01	DCP02	DCP03		
Location:	RC01	RC02	RC03		
Depth (mm)			No of Pe	trometer Blows per 100 mm Depth Interval	
0-100	-	-	-		
100-200	2	2	3		
200-300	4	1	3		
300-400	1	1	2		
400-500	0	0	3		
500-600	2	1	3		
600-700	3	2	4		
700-800	3	2	3		
800-900	3	3	4		
900-1000					
1000-1100					
1100-1200					
1200-1300					
1300-1400					
1400-1500	•				
1500-1600					
1600-1700					
1700-1800					
1800-1900					

Test No:							
Location:							
Depth (mm)		No of Pe	netrometer	Blows per 10	00 mm Dept	h Interval	
0-100							
100-200							
200-300							
300-400							
400-500							
500-600							
600-700							
700-800							
800-900							
900-1000							
1000-1100							
1100-1200							
1200-1300							
1300-1400							
1400-1500							
1500-1600							
1600-1700							
1700-1800							

Dynamic Cone Penetrometer tests done in accordance with AS 1289.6.3.2

HB: Hammer bounce (refusal)

0 = Penetration due to hammer weight only

R: Refusal

DYNAMIC CONE PENETROMETER FIELD TEST DATA (AS12896.3.2)

Client:ABN GroupJob No: J1501236Project:Proposed Residential DevelopmentDate: 23/10/2015Location:939 & 993 Baldivis Road, BaldivisEngineer: SC

Test No:	DCP4	DCP05	DCP06	DCP07	DCP08	DCP09	DCP10	DCP11	DCP12
Location:	BH01	BH02	BH03	BH04	BH05	ВН06	BH07	BH08	ВН09
Depth (mm)			No of Per	netrometer	Blows per 10	00 mm Dept	h Interval		
0-100	-	-	-	to	-	-	-	-	-
100-200	2	3	6	Borehole not drilled due to access constraints	2	2	3	3	4
200-300	2	3	2	hole not drilled du access constraints	2	3	2	1	2
300-400	3	1	1	rille	2	3	2	0	1
400-500	3	2	1	t di	3	3	1	0	1
500-600	5	2	3	ou a	2	4	1	3	1
600-700	7	3	2	olor	3	4	1	2	2
700-800	8	2	2	orek a	3	4	2	3	2
800-900	7	2	4	Вс	4	3	3	5	2
900-1000		2			4		3		5
1000-1100		2							2
1100-1200		3							2
1200-1300		3							3
1300-1400		3							4
1400-1500		4							4
1500-1600		3							5
1600-1700		4							4
1700-1800		3							4
1800-1900									5

Test No:	DCP13	DCP14	DCP15	DCP16	DCP17	DCP18	DCP19	DCP20	
Location:	BH10	BH11	BH12	BH13	BH14	BH15	BH16	BH17	
Depth (mm)			No of Per	netrometer	Blows per 10	00 mm Dept	h Interval	•	•
0-100		-	-		-	ţ	-		
100-200	pa	2	3	pa	1	ne	2	pe	
200-300	ess	2	2	ess	2	d d aint	1	ess	
300-400	assı	1	2	assessed	2	rille	1	assi	
400-500	Density not assessed	1	3	ot	1	Borehole not drilled due to access constraints	1	Density not assessed	
500-600		3	2	Density not	1	ou a	2	. ₹	
600-700	insi	3	3	insi	2	hole no access	2	insi	
700-800	De	3	3	De	3	orek a	2	De	
800-900		4			4	Вс	3		
900-1000									
1000-1100									
1100-1200									
1200-1300									
1300-1400									
1400-1500	•								
1500-1600	•								
1600-1700	•								
1700-1800									

Dynamic Cone Penetrometer tests done in accordance with AS 1289.6.3.2

HB: Hammer bounce (refusal)

0 = Penetration due to hammer weight only

R: Refusal

PERTH SAND PENETROMETER FIELD TEST DATA (Standard Depth 900mm) (AS12896.3.3)

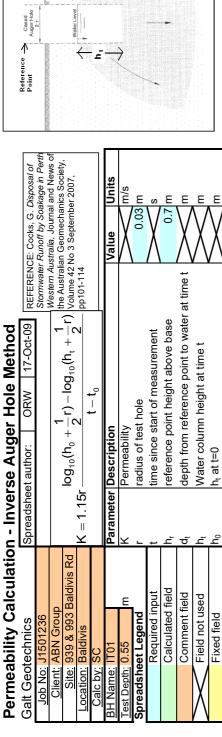
Client: ABN Group Job No: J1501236

Project: Proposed Residential Development Date: 23/10/2015

Location: 939 & 993 Baldivis Road, Baldivis

Engineer: SC

			I				- T	ı
Test No:	PSP01	PSP02	PSP03	PSP04	PSP05	PSP06	PSP07	PSP08
Location:	BH18	BH019	BH20	BH21	BH22	BH23	BH24	BH25
Depth (mm)			N° of Peneti	ometer Blows	oer 150 mm De	oth Interval	•	•
0-150	-	-	-	-	-	-	-	-
150-300	4	12	2	2	3	3	3	8
300-450	5	12	4	4	6	4	4	7
450-600	12	6	4	5	6	5	5	5
600-750	12	5	5	5	6	5	5	6
750-900	13	6	4	5	6	5	6	5
900-1050	13	7	3	6			5	6
1050-1200		,	3	0				- U
1200-1350			4					
1350-1500			5					
1500-1650			5					
			5					
1650-1800			5					
1800-1950					-		1	
1950-2100								
Test No:								
Location:								
Depth (mm)			N° of Peneti	ometer Blows	oer 150 mm De	oth Interval		
0-150								
150-300								
300-450								
450-600								
600-750								
750-900								
900-1050								
1050-1200								
1200-1350								
1350-1500								
1500-1650								
1650-1800								
1800-1950								
1950-2100								
Test No:								
Location:								
Depth (mm)			N ⁰ of Penet	ometer Blows p	er 150 mm De	nth Interval		
0-150			it or reneti	ometer blows	Je. 130 IIIII De	Jen meer var	1	
150-300		1			1		1	
300-450		1			1		1	
450-600							-	
600-750							-	
		-			 		 	
750-900		-			 		 	
900-1050					-		1	
1050-1200		-			-		-	
1200-1350								
1350-1500							ļ	
1500-1650								
1650-1800								


Perth Sand Penetrometer tests done in accordance with AS 1289.6.3.3 (except blow counts are reported per 150 mm, rather than 300 mm)

HB: Hammer bounce (refusal)

^{0 =} Penetration due to hammer weight only

Appendix D: Infiltration Test Results

Test 2

K (m/day)

K (m/s)

h_t (m)

(m) [^]p

t (s)

Test 1

16.8 15.4 14.3 16.0

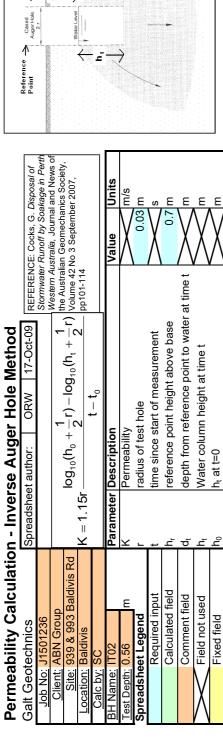
2.7E-04 1.9E-04 1.8E-04 1.7E-04 1.9E-04

0.515 0.355 0.3 0.245 0.19 0.16

0.185 0.345 0.4 0.455 0.51 0.54 0.595

	.00				
Soil Surface					
ű					
ii d					
-					
,					
\leftarrow	00	٠ ١			
\leftarrow	\neg \rightarrow				
	l×,				
9	le v				
Cased Auger Hole 2 r	Water Level	1			
2 g C	ate	1			
۷	s	-			
Ψ		/ -	N		
Reference L.		7 2	7		
ě					
<u> </u>			1111	V	
9.5					
∝ •					
		1010	1 1 1 1 1		

	(ш) ¹ կ	0.51	0.39	0.32	0.265	0.215	0.15	0.115	0.08			
	d _w (m)	0.19	0.31	0.38	0.435	0.485	0.55	0.585	0.62			
Test 3	t (s)	0	20	40	09	80	100	120	140			
•												
	K (m/day)	\bigvee	13.4	13.3	11.8	11.7	13.1	13.0	12.7	14.4		


K (m/day)	\langle	13.4	13.3	11.8	11.7	13.1	13.0	12.7	14.4	12.9	
(s/w) y	\setminus	1.6E-04	1.5E-04	1.4E-04	1.4E-04	1.5E-04	1.5E-04	1.5E-04	1.7E-04	1.5E-04	
h _t (m)	0.52	0.42	0.34	0.295	0.245	0.18	0.145	0.12	0.075	AVERAGE 1.5E-04	•
(m) ^м p	0.18	0.28	0.36	0.405	0.455	0.52	0.555	0.58	0.625		
t (s)	0	20	40	09	80	100	120	140	160		

14.9	1.7E-04	AVERAGE		
15.8	1.8E-04	0.08	0.62	140
15.1	1.7E-04	0.115	0.585	120
15.0	1.7E-04	0.15	0.55	100
13.4	1.5E-04	0.215	0.485	80
13.6	1.6E-04	0.265	0.435	09
14.5	1.7E-04	0.32	0.38	40
16.8	1.9E-04	0.39	0.31	20
\bigvee	$\backslash\!$	0.51	0.19	0
K (m/day)	K (m/s)	(ա) ¹ կ	(ш) ["] р	t (s)

×
hod
Met
<u>e</u>
운
ge
À
erse
<u>≥</u>
ĬĬŧ
abi
Ē
Pe
vsis
naj
8 A
is/0
<u> </u>
Ba
S
roul
S
ABN
9
1236
J1501
5\7
201
)\sq
5
)ate
110
,20
SBS
H
GAL
=

16.9

\\GALT-SBS2011\\Data\Jobs\2015\J1501236 - ABN Group SI Baldivis\08 Analysis\\Permeability Inverse Auger Hole Method.xls

	Soil Surface					
\leftarrow	- p		-	\rightarrow		
Casod Auger Hole	_bx	Water Level			-	
Reference			<u>.</u>	$\overrightarrow{}$		

K (m/day)	\bigvee	10.5	12.6	13.3	12.2	13.4	14.4	12.7
K (m/s)	$\langle \rangle$	1.2E-04	1.5E-04	1.5E-04	1.4E-04	1.5E-04	1.7E-04	1.5E-04
h _t (m)	0.42	0.355	0.28	0.22	0.19	0.14	0.1	AVERAGE
d _w (m)	0.28	0.345	0.42	0.48	0.51	0.56	9.0	
t (s)	0	20	40	09	80	100	120	

(s/ш) y	\setminus	1.2E-04	1.3E-04	1.4E-04	1.3E-04	1.3E-04	1.1E-04	1.1E-04	1.0E-04	1.0E-04				1.2E-04
h _t (m)	0.47	0.4	0.325	0.26	0.225	0.195	0.185	0.165	0.15	0.13				AVERAGE
(m) ["] p	0.23	0.3	0.375	0.44	0.475	0.505	0.515	0.535	0.55	0.57				
t (s)	0	20	40	09	80	100	120	140	160	180				
K (m/day)	\bigvee	10.5	12.6	13.3	12.2	13.4	14.4							12.7
(s)	\bigvee	40	9	9	4	40	4							04

K (m/day)

Test 3

Test 2

K (m/day)

K (m/s)

h_t (m)

q^ (m)

t (s)

Test 1

20.6 19.0

2.4E-04 2.2E-04

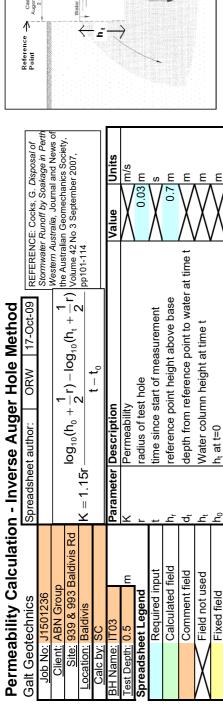
17.0 17.8 17.8 17.8

2.0E-04 2.1E-04 2.1E-04 2.1E-04

0.48 0.345 0.26 0.21 0.15 0.11

0.22 0.355 0.44 0.49 0.55 0.59

12.2


11.4 10.8 9.6 9.2 8.7 8.7

s
×
9
let
Σ
90
ī
de
Au
se
ē
≥
₹
meability
jea
řΤ
Pe
sis/P
Š
'n
8
9,0
:≝
ald
B
S
Ж
5
ž
AB
11\Data\Jobs\2015\J1501236 - ABN Group SI Baldivis\
236
31,
15
5
11
Š
g
Ž
ate
9
_
32
Ä
악
\\GALT-SBS2011\\Data\Jo
Ò
_

18.3

2.1E-04

\\GALT-SBS2011\\Data\Jobs\2015\J1501236 - ABN Group SI Baldivis\08 Analysis\\Permeability Inverse Auger Hole Method.xls

	90				
	Soil Surface				
	S				
,					
\sum		_ - _	77		
		-			
Page 7		Level			
Cased Auger Hole 2 r		WaterLevel			
	<u> </u>	-5			
Reference		ء 🖯			
Ě				_	
Poin					

Test 3

K (m/day)

K (m/s)

t (s)

	K (m/day)	V	15.3	16.0	15.2	13.2	11.9	10.8	10.4	10.2	6.6					12.5	
	K (m/s)		1.8E-04	1.8E-04	1.8E-04	1.5E-04	1.4E-04	1.2E-04	1.2E-04	1.2E-04	1.1E-04					1.4E-04	
	h _t (m)	0.46	0.36	0.275	0.22	0.195	0.175	0.16	0.14	0.12	0.105					AVERAGE	
	q _w (m)	0.24	0.34	0.425	0.48	0.505	0.525	0.54	0.56	0.58	0.595						
Test 2	t (s)	0	20	40	09	80	100	120	140	160	180						

14.9 15.1 13.3 10.2 9.7 9.2

> 1.2E-04 1.1E-04

> > 0.575

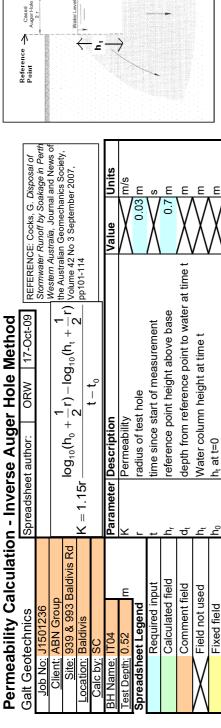
1.7E-04 1.5E-04

0.45 0.33 0.235 0.205 0.17 0.13 0.14 0.125

20 40 40 60 100 140 140 180

0.25 0.37 0.465 0.495 0.53 0.57 0.58

16.1


2.3E-04 1.9E-04 1.7E-04

K (m/day)	\setminus	15.3	14.3	13.4	11.7	10.3	9.6	9.0	9.8	8.5			11.2
K (m/s)	$\langle \rangle$	1.8E-04	1.7E-04	1.6E-04	1.4E-04	1.2E-04	1.1E-04	1.0E-04	9.9E-05	9.9E-05			1.3E-04
h _t (m)	0.46	0.36	0.29	0.24	0.215	0.2	0.18	0.165	0.15	0.13			AVERAGE
(w) [^] p	0.24	0.34	0.41	0.46	0.485	0.5	0.52	0.535	0.55	0.57			
t (s)	0	20	40	09	80	100	120	140	160	180			
													•

14.2

1.6E-04

\\GALT-SBS2011\\Data\Jobs\2015\J1501236 - ABN Group SI Baldivis\08 Analysis\\Permeability Inverse Auger Hole Method.xls

K (m/day)

K (m/s)

(m) ^p

t (s) est 1

6.4E-05 6.0E-05

7.1E-05 7.9E-05

6.8E-05

0.59 0.52 0.475 0.405 0.38 0.36 0.33 0.305

0.11 0.225 0.225 0.26 0.32 0.34 0.37 0.395

20 40 40 60 100 140 140 180

6.0E-05 6.0E-05

	K (m/day)	\bigvee	4.4	4.3	4.5	4.1	4.0	3.8	3.8	3.6	3.4				4.0
	(s/m) y	N	5.1E-05	5.0E-05	5.3E-05	4.7E-05	4.6E-05	4.4E-05	4.4E-05	4.1E-05	4.0E-05				4.6E-05
	h _t (m)	0.59	0.55	0.515	0.475	0.455	0.43	0.41	0.385	0.375	0.36				AVERAGE
	(m) [^] p	0.11	0.15	0.185	0.225	0.245	0.27	0.29	0.315	0.325	0.34				
Test 2	t (s)	0	20	40	09	80	100	120	140	160	180				

0.58 (m/s) 0.54 5.2E-05 0.515 4.3E-05 0.485 4.0E-05 0.405 0.42 0.42 3.9E-05 0.395 4.0E-05 0.395 0.395 0.395 4.0E-05 0.396 3.8E-05 0.36 3.8E-05	Test 3				
0.12 0.58 0.16 0.54 5.2E-05 0.16 0.54 5.2E-05 0.185 0.515 4.3E-05 0.215 0.235 0.465 4.0E-05 0.28 0.325 0.325 0.305	t (s)	d _w (m)	h _t (m)	K (m/s)	K (m/day)
0.16 0.54 5.2E-05 0.185 0.515 0.515 0.515 0.215 0.485 0.235 0.465 0.465 0.28 0.305 0.305 0.305 0.305 0.305 0.306 0	0	0.12	0.58	\setminus	\bigvee
0.185 0.515 4.3E-05 0.215 0.235 0.485 4.3E-05 0.235 0.465 4.0E-05 0.28 0.32 0.42 3.9E-05 0.305 0.325 0.375 4.0E-05 0.34 0.36 3.8E-05 0.34 0.36 3.8E-05 0.34 0.36 3.8E-05 0.34 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	20	0.16	0.54	5.2E-05	4.5
0.215 0.485 4.3E-05 3 0.235 0.465 4.0E-05 3 0.26 0.44 4.0E-05 3 0.28 0.305 0.305 0.305 0.375 4.0E-05 3 0.34 0.36 3.8E-05 3 3 0.34 AVERAGE 4.2E-05 3	40	0.185	0.515	4.3E-05	3.7
0.235 0.465 4.0E-05 3 0.26 0.44 4.0E-05 3 0.28 0.42 3.9E-05 3 0.305 0.305 0.375 4.0E-05 3 0.34 0.36 3.8E-05 3 0.34 AVERAGE 4.2E-05 3	09	0.215	0.485	4.3E-05	3.8
0.26 0.44 4.0E-05 3 0.28 0.32 0.305 0.305 0.375 4.0E-05 3 0.34 0.36 3.8E-05 3 0.34 AVERAGE 4.2E-05 3	80	0.235	0.465	4.0E-05	3.5
0.28 0.42 3.9E-05 3 0.305 0.395 4.0E-05 3 0.325 0.375 4.0E-05 3 0.34 0.36 3.8E-05 3 AVERAGE 4.2E-05 3	100	0.26	0.44	4.0E-05	3.5
0.305 0.395 4.0E-05 3 0.325 0.375 4.0E-05 3 0.34 0.36 3.8E-05 3 AVERAGE 4.2E-05 3	120	0.28	0.42	3.9E-05	3.4
0.34 0.36 4.0E-05 3 0.34 0.36 3.8E-05 3 AVERAGE 4.2E-05 3	140	0.305	0.395	4.0E-05	3.4
0.34 0.36 3.8E-05 AVERAGE 4.2E-05	160	0.325	0.375	4.0E-05	3.4
4.2E-05	180	0.34	0.36	3.8E-05	3.3
4.2E-05					
			AVERAGE	4.2E-05	3.6

\\GALT-SBS2011\\Data\Jobs\2015\J1501236 - ABN Group SI Baldivis\08 Analysis\\Permeability Inverse Auger Hole Method.xls

Appendix E: Geotechnical Laboratory Test Results

Mining & Civil Geotest Pty Ltd

Organic content of Soils ASTM: D 2974-07a Test Method C

Ph (08) 9414 8022 Fax (08) 9414 8011 Job No: 60083

Email matt@mcgeotest.com.au Report No: 60083-P15/7784
Unit 1/1 Pusey Road, JANDAKOT WA 6164 Date of issue: 5 November 2015

Client:Galt Geotechnics (J1501236)Date tested:30 October 2015Project:ABN GroupTested by:P CulverstonLocation:Proposed Residential Subdivision, BaldivisChecked:K M Jones

Sample Number	Sample Identification & Depth (m)	Ash content %	Organic content %
P15/7784	HTP 01, 0	89.5	10.5
P15/7785	HTP 02, 0	89.3	10.7
P15/7786	HTP 03, 0	89.9	10.1
P15/7787	HTP 04, 0	90.0	10.0
Tested as received	Furnace temperature 440°c		
	Flynn St, Wembley WA	•	•

Organic content April 200

Approved Signature Kevin M Jones

Particle Size Distribution & Plasticity Index tests

Client:

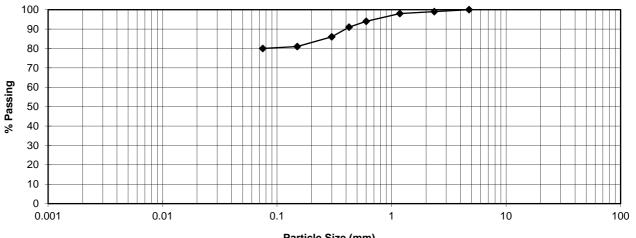
Mining & Civil Geotest Pty Ltd

unit1/1 Pusey Road, Jandakot, WA 6164 Ph (08) 9414 8022 Fax (08) 9414 8011

Galt Geotechnics (J1501236)

Email: kevin@mcgeotest.com.au

Job No: 60083


Report No: 60083-P15/7784

Sample No: P15/7784

Issue Date: 5 November 2015

HTP 01 **Sample Location:**

Project: **ABN** Group Sample Depth: Location: Proposed Residential Subdivision, Baldivis

Particle Size (mm)

SIEVE ANALYSIS AS 1289.3.6.1

Sieve Size (mm)	% Passing			
125.0				
75.0		Plasticity index tests		
37.5		AS 1289		
19.0		Liquid limit 3.1.1	58	%
9.5		Plastic limit 3.2.1	34	%
4.75	100	Plasticity index 3.3.1	24	%
2.36	99	Linear shrinkage 3.4.1	9.5	%
1.18	98			
0.600	94	Cracked		
0.425	91			
0.300	86	Curled	1	
0.150	81			
0.075	80			

Sampling Procedure: Tested as received

Accreditation for compliance with ISO/IEC 17025. This document may not be reproduced except in full. Accreditation No 15545.

Approved signature

Particle Size Distribution & Plasticity Index tests

Client:

Project:

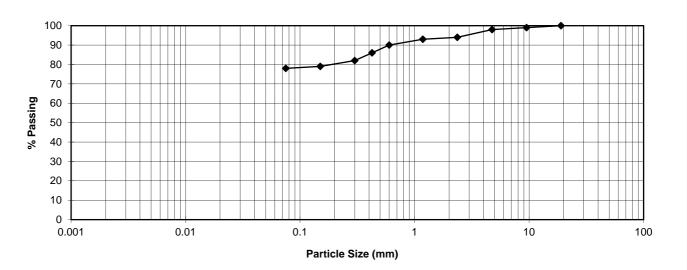
Mining & Civil Geotest Pty Ltd

unit1/1 Pusey Road, Jandakot, WA 6164 Ph (08) 9414 8022 Fax (08) 9414 8011

Email: kevin@mcgeotest.com.au

Galt Geotechnics (J1501236) ABN Group

Location: Proposed Residential Subdivision, Baldivis


Job No: 60083

Report No: 60083-P15/7785

Sample No: P15/7785

Issue Date: 5 November 2015

Sample Location: HTP 02 Sample Depth: 0

SIEVE ANALYSIS AS 1289.3.6.1

Sieve Size (mm) 125.0	% Passing			
75.0		Plasticity index tests		
37.5		AS 1289		
19.0	100	Liquid limit 3.1.1	72	%
9.5	99	Plastic limit 3.2.1	35	%
4.75	98	Plasticity index 3.3.1	37	%
2.36	94	Linear shrinkage 3.4.1	13.5	%
1.18	93			
0.600	90	Cracked		
0.425	86			
0.300	82	Curled		
0.150	79			
0.075	78			

Sampling Procedure: Tested as received

Accreditation for compliance with ISO/IEC 17025. This document may not be reproduced except in full. Accreditation No 15545.

Approved signature

Particle Size Distribution & Plasticity Index tests

Client:

Project:

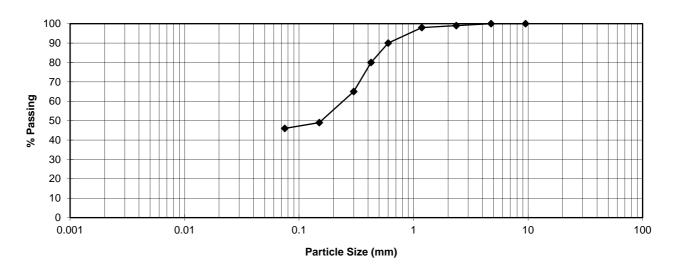
Mining & Civil Geotest Pty Ltd

unit1/1 Pusey Road, Jandakot, WA 6164 Ph (08) 9414 8022 Fax (08) 9414 8011

Email: kevin@mcgeotest.com.au

Galt Geotechnics (J1501236) ABN Group

Location: Proposed Residential Subdivision, Baldivis


Job No: 60083

Report No: 60083-P15/7786

Sample No: P15/7786

Issue Date: 5 November 2015

Sample Location: HTP 03 **Sample Depth:** 0

SIEVE ANALYSIS AS 1289.3.6.1

Sieve Size (mm)	% Passing			
125.0				
75.0		Plasticity index tests		
37.5		AS 1289		
19.0		Liquid limit 3.1.1	42	%
9.5	100	Plastic limit 3.2.1	26	%
4.75	100	Plasticity index 3.3.1	16	%
2.36	99	Linear shrinkage 3.4.1	8.0	%
1.18	98			
0.600	90	Cracked		
0.425	80			
0.300	65	Curled		
0.150	49			
0.075	46			

Sampling Procedure: Tested as received

Accreditation for compliance with ISO/IEC 17025. This document may not be reproduced except in full. Accreditation No 15545.

Approved signature

Particle Size Distribution & Plasticity Index tests

Mining & Civil Geotest Pty Ltd

unit1/1 Pusey Road, Jandakot, WA 6164 Ph (08) 9414 8022 Fax (08) 9414 8011

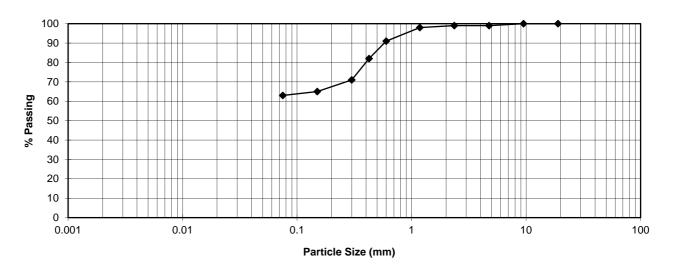
Email: kevin@mcgeotest.com.au

Galt Geotechnics (J1501236)

Project: ABN Group

Client:

Location: Proposed Residential Subdivision, Baldivis


Job No: 60083

Report No: 60083-P15/7787

Sample No: P15/7787

Issue Date: 5 November 2015

Sample Location: HTP 04
Sample Depth: 0

SIEVE ANALYSIS AS 1289.3.6.1

Sieve Size (mm) 125.0	% Passing			
75.0		Plasticity index tests		
37.5		AS 1289		
19.0	100	Liquid limit 3.1.1	49	%
9.5	100	Plastic limit 3.2.1	32	%
4.75	99	Plasticity index 3.3.1	17	%
2.36	99	Linear shrinkage 3.4.1	8.0	%
1.18	98			
0.600	91	Cracked		
0.425	82			
0.300	71	Curled		
0.150	65			
0.075	63			

Sampling Procedure: Tested as received

Accreditation for compliance with ISO/IEC 17025. This document may not be reproduced except in full. Accreditation No 15545.

Approved signature

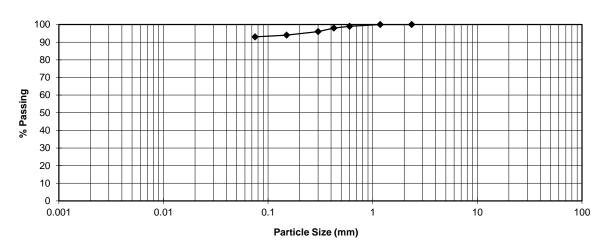
Particle Size Distribution & Plasticity Index tests

Mining & Civil **Geotest Pty Ltd**

Job No: 60083

60083-P15/8059 Report No: Sample No: P15/8059

20-Nov-15


Email: kevin@mcgeotest.com.au **Issue Date:**

Client: Galt Geotechnics (J1501236) **Sample Location:** BH16 Project: ABN Group - Proposed Residential Subdivision Sample: 2

Location: Baldivis Re-test

unit1/1 Pusey Road, Jandakot, WA 6164

Ph (08) 9414 8022 Fax (08) 9414 8011

SIEVE ANALYS	IS AS 1289.3.6.1	Plasticity index tests		
Sieve Size (mm)	% Passing	AS 1289		
125.0		Liquid limit 3.1.1	120	%
75.0		Plastic limit 3.2.1	38	%
37.5		Plasticity index 3.3.1	82	%
19.0		Linear shrinkage 3.4.1	27.5	%
9.5				
4.75		Cracked	J	
2.36	100			
1.18	100	Curled	√	
0.600	99			
0.425	98			
0.300	96			
0.150	94			
0.075	93			

Sampling Procedure: Tested as received

Accreditation for compliance with ISO/IEC 17025. This document may not be reproduced except in full. Accreditation No 15545.

Approved signature

Appendix F: Environmental Laboratory Certificates of Analysis and Chain of Custody Documentation

Control Cont														5	,	,		16		QS3009 R0
POFFITS Call Solving Call Solv		and the same of th			Consignment # :	Courier				[(2	Signature:				Signature:	45
Continues	ri number;	Ropes			eliver	-		J DAY			5 6				Date & Time		7		Date & Time :	9.
S Triggs		4			Courfor										Received By			-	Ratinguished By:	2
S Triggs	erature on arrivat:	Готр	Shipmont	Method Of				und time	Tum are	1		*	oratory Stat	Lab					-	1 1
S Triggs							+		+	1	-	+	+		+	+		- Linean and a second	26	3 123
S Triggs	The state of the s											-							25	11/2
S Till					THE PERSONNEL PROPERTY AND ADDRESS OF THE PERSONNEL PROPERTY AND ADDRE														24	NI
S First 1																-			23	N
S File											1	+				1	T	A STATE OF THE PARTY OF THE PAR	22 27	NIN
The content of the								1	-	1	+		+		1	T	23/10/	טימכאעם	2 20	3 1N
S							-	-		-	-	+	+		1	T	22/10/	BUSENO ON WALLO	2 4	3 1-
The color of the	Hormisoreta	The state of the s					+	-			+	+	1			T	23/10/	BUNKTE	0	1
Trigg			-		-		-	-			-		-		1	T	23/10/	BH22/2.0	17	
State Content Name Content Nam							-				-				1		23/10/	BH21/2.25	16	-
S	Marie and American Am																23/10/	BH20/1.5	15	
S Order Syldney Sy			200												Ц		23/10/	BH19/0.25	14	
Tigst											-		-	-	1		23/10/	BH18/2.0	13	-
S							-								_		23/10/	BH14/1.25	11	-
Part	***************************************	The second secon													L		23/10/	BH12/1.75	10	Some
Solidary 1 Hand Rock Lane Core																П	23/10/	BH11/0.75	\$	
Solidary Content Name Analyses Property Content Name	And the second s												1				23/10/	BH09/0.5	00 -	
Contact Name Finds	ų.						-		+		+	+	-	-	1	T	23/10/	BH07/1.75	1 100	
S Contact Name 1 and Popular CHAIN OF CUSTODY RECORD								-		T	-	-					23/10/	ВН06/0.5	Co	1000
Sydings	***************************************							i									23/10/	BH05/2.0	4	
Syding S		2.30	1-1														23/10/	BH03/0.5	3	3
Sydney					À												23/10/	BH02/2.5	2	
Contact Name : Ahe Gubert/Reads : Industrial Contact Name : All Gubert/Reads : Industrial Contact Name : Industrial C																	23/10/	BH01/0.0	-	
Sydney Unit F3 - 88 alding F, 10 Mars Road, Lans Cove Phone: 1917 2000 8400 France: 1917 2000 France:	ampie comments:	Jar		Ţ,	250P	Containe										-	Date	Sample ID		
CHAIN OF CUSTODY RECORD Unit 1-21 smallwood blace. Murante Phone: 4012 3000 Fear: 4013 3004 5000 Fear: 4	7 days	ASLP, TCLP	-		ous iron	Ferre												Eurofins mgt DJ water batch number:	ina mgt D	
Sydney Sydney Sydney Out 2-0 Brisbane Out 2-0 Brisbane Out 2-1 Smithwood Place, Murmin'e Phone: 4-12 Smithwood Place, Murmin'e Page 1 of 1 Page 1 o		SPOCAS, pH Field and FOX, CrS	-		TOS	Solid	-			_	_		**							
Sydney		Anioris	-		, Narato, Narke, T	800.														
Sydney Unit 2- Baldring 1, 10 Are Read, Lane Cove Prince: 913 2549 6000 Prince: 91	72 hou	Nicrobiological testing	8		biological testing	Micro					_					ć	24.00%) LI SWGALIE	O XII	
Sydney	28 days	Mercury, CrVI			ury, CrVI	Mercu											SENI	ONDENCEIS	DRRES	
Sydney Unit 2-1 Building F; 10 Mars Road, Lane Cove Phone: 4012 2600 4000 Phone: 4012 2600 4000 Email: enviro.pyd@mgtlabmark.com.au CHAIN OF CUSTODY RECORD Contact Name : Asho Gulbent/Brad Palmer Project Numbor : J1501236 Project	6 month	Heavy Metals			y Metals	Heav											P	NSURE THAT	EASE	
Sydney Unit 2-1 Building F, 19 Mars Road, Lane Cove Phone, 19 12 2600 400 Phone, 19 13 2604 5000 Email: enviro.pyd@mglabmark.com.au CHAIN OF CUSTODY RECORD CHAIN OF CUSTODY RECORD Page 1 of 1 Page 1 of 1 Project Number: 19501236 Project N	14 days	BTEX, MAH, VOC			X, MAH, VOC	HAL									5000000	gena versoursen	MIGHTON CONTROL	TO THE STATE OF TH	ACCONTROL STATES	
Sydney Unit 23 - Bulding F. 19 Mars Road, Lane Cove Phone: +612 8900 8400 Phone: +612 8900 8400 Phone: +612 8900 8400 Email: enviro.ayd@mglabmark.com.au CHAIN OF CUSTODY RECORD Tetal Py Lid Contact Name : Asha Gulbart/Brad Palmar Wombley Project Name : Asha Gulbart/Brad Palmar Project Name : Asha Group Baldivis				-	Wate													ions & Comments :	scial Direc	
Sydney Unit F2 - 6 Building F, 10 Mairs Road, Lane Cove Phone: -612 8600 8400 Email: enviro.ayd@mgtbbmark.com.au CHAIN OF CUSTODY RECORD Contact Name: Asha Gutbart/Brad Palmer Frouetrial for COCISRN/Reaults: 1-ib-results/Bradtomy.com.au FROJECT Name: ABN Group Baddivis FROJECT Name: ABN Group Baddivis		tion contact the lab	further informa	Some common						ytos	Ana					100				
Sydney Unit F3 - 6 Building F, 10 Mans Road, Lane Cove Phone: -912 9008 894 Monars Road, Lane Cove Phone: -912 9008 4960 Phone: -913 9008 4960 Email: enviro.bis@mglisbmark.com.au CHAIN OF CUSTODY RECORD Contact Name: Ashe Gulbart/IBrad Palmer Project Number: -11501236	200	uma output tormati rur;				N Group Bai	CT Name : AB	PROJE		: Narmes	uta@gattern	lterry.com.ar	nichael@ga	michael.cam						
Sydney Unit F3 - 6 Unit F5 - 6		Eurofins mgt quote ID :				11501236	CT Number:	PROJE								,	t, Wembley	s : 2/39 Flynn Street	ico Addres	- 41
## Sydney ##FOFINS Sydney Brisbane		COC Number : 1501236-0					se Order :	Purcha			aimar	shert/Brad	ne : Ashe Gi	Contact Nan			ntal Pty Ltd	ne ; Galt Environmo	mpany Na	-
Sydney Unit F3 - 0 Bulding F, 10 Mars Road, Lans Cove Phona: -612 9500 8400 Email: entrousyd@mglisbnark.com.au CHAIN OF CUSTODY RECORD		Page 1 of 1)LS	CLIENT DETAILS	===
Unit F3 - 0 Building F, 10 Mars Road, Lane Cove Unit 1-21 Smallwood Place, Murmi's Phone: +612 8600 8400 Phone: +617 3602 4600 Phone: +617 3602 4600 Email: enviro.syd@mglisbriark.com.au Email: enviro.syd@mglisbriark.com.au							CORD	DY RE	OTSU	N OF (СНА									
☐ Sydney ☐ Brisbane	564 5090	n Town Close, Oakleigh, VIC 3166 113 8564 5000 Fax +013 8 Juhies melb@mgtfabmark.com.au	2 Kingston Phone: +8 Email: enq			Murrarie ark.com.au	allwood Place, 3902 4600 bris@mgllabm	Phone: +617: Email: enviro			ana Cove	Mars Road, Lu omark.com.a	8400 8400 8400 8400 8400 8400	Unit F3 - 6 Bu Phone: +612 Email: enviro		mgt	-	uro III	000	
	The state of the s	Welbourne				***************************************	sbane	Br					dney	Sy					•	

Passered &

Galt Environment P/L 2/39 Flynn St Wembley WA 6014

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: -ALL :-SRA/Results

Report 477984-S

Project name ABN GROUP BALDIVIS

Project ID J1501236 Received Date Nov 03, 2015

Client Sample ID			BH01/0.0	BH02/2.5	BH03/0.5	BH05/2.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B15-No01346	B15-No01347	B15-No01348	B15-No01349
Date Sampled			Oct 23, 2015	Oct 23, 2015	Oct 23, 2015	Oct 23, 2015
Test/Reference	LOR	Unit				
Chromium Suite						
pH-KCL	0.1	pH Units	5.8	5.9	4.7	5.6
Acid trail - Titratable Actual Acidity	2	mol H+/t	6.0	4.0	57	6.0
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	0.09	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	< 0.005	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	< 3	< 3
Sulfur - KCl Extractable	0.02	% S	n/a	n/a	n/a	n/a
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - acidity (ANCbt)	2	mol H+/t	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	0.09	< 0.02
Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	57	< 10
Liming Rate ^{S01}	1	kg CaCO3/t	< 1	< 1	4.0	< 1
Extraneous Material						
<2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
>2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	0.1	%	3.1	16	18	3.1

Client Sample ID			BH06/0.5	BH07/1.75	BH08/1.0	BH09/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B15-No01350	B15-No01351	B15-No01352	B15-No01353
Date Sampled			Oct 23, 2015	Oct 23, 2015	Oct 23, 2015	Oct 23, 2015
Test/Reference	LOR	Unit				
Chromium Suite		•				
pH-KCL	0.1	pH Units	5.5	4.9	4.7	4.9
Acid trail - Titratable Actual Acidity	2	mol H+/t	7.0	32	33	37
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.05	0.05	0.06
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	< 0.005	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	< 3	< 3
Sulfur - KCl Extractable	0.02	% S	n/a	n/a	n/a	n/a
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - acidity (ANCbt)	2	mol H+/t	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
Net Acidity (Sulfur Units)	0.02	% S	< 0.02	0.05	0.05	0.06
Net Acidity (Acidity Units)	10	mol H+/t	< 10	32	33	37
Liming Rate ^{S01}	1	kg CaCO3/t	1.0	2.0	3.0	3.0
Extraneous Material						
<2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
>2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	0.1	%	6.8	19	24	18

Client Sample ID Sample Matrix			BH11/0.75 Soil	BH12/1.75 Soil	BH14/1.25 Soil	BH16/0.0 Soil
Eurofins mgt Sample No.			B15-No01354	B15-No01355	B15-No01356	B15-No01357
Date Sampled			Oct 23, 2015	Oct 23, 2015	Oct 23, 2015	Oct 23, 2015
Test/Reference	LOR	Unit				
Chromium Suite						
pH-KCL	0.1	pH Units	5.0	4.8	4.8	4.6
Acid trail - Titratable Actual Acidity	2	mol H+/t	22	36	26	79
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	0.04	0.06	0.04	0.13
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	< 0.005	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	< 3	< 3
Sulfur - KCl Extractable	0.02	% S	n/a	n/a	n/a	n/a
HCl Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - acidity (ANCbt)	2	mol H+/t	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
Net Acidity (Sulfur Units)	0.02	% S	0.04	0.06	0.04	0.13

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH11/0.75 Soil B15-No01354 Oct 23, 2015	BH12/1.75 Soil B15-No01355 Oct 23, 2015	BH14/1.25 Soil B15-No01356 Oct 23, 2015	BH16/0.0 Soil B15-No01357 Oct 23, 2015
Test/Reference	LOR	Unit				
Chromium Suite						
Net Acidity (Acidity Units)	10	mol H+/t	22	36	26	79
Liming Rate ^{S01}	1	kg CaCO3/t	2.0	3.0	2.0	6.0
Extraneous Material						
<2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
>2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	0.1	%	29	22	24	14

Client Sample ID			BH18/2.0	BH19/0.25	BH20/1.5	BH01/2.25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B15-No01358	B15-No01359	B15-No01360	B15-No01361
Date Sampled			Oct 23, 2015	Oct 23, 2015	Oct 23, 2015	Oct 23, 2015
Test/Reference	LOR	Unit				
Chromium Suite		•				
pH-KCL	0.1	pH Units	5.8	5.4	5.7	5.9
Acid trail - Titratable Actual Acidity	2	mol H+/t	4.0	9.0	3.0	2.0
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	< 0.005	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	< 3	< 3
Sulfur - KCl Extractable	0.02	% S	n/a	n/a	n/a	n/a
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - acidity (ANCbt)	2	mol H+/t	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	< 10	< 10
Liming Rate ^{S01}	1	kg CaCO3/t	< 1	1.0	< 1	< 1
Extraneous Material						
<2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
>2mm Fraction	0.005	g	n/a	n/a	n/a	n/a
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
	_					
% Moisture	0.1	%	4.6	2.9	1.7	2.8

Client Sample ID			BH22/2.0	BH23/1.0	BH24/1.75	BH25/0.0	
Sample Matrix			Soil	Soil	Soil	Soil B15-No01365	
Eurofins mgt Sample No.			B15-No01362	B15-No01363	B15-No01364		
Date Sampled			Oct 23, 2015	Oct 23, 2015	Oct 23, 2015	Oct 23, 2015	
Test/Reference	LOR	Unit					
Chromium Suite							
pH-KCL	0.1	pH Units	5.5	5.3	5.9	5.3	
Acid trail - Titratable Actual Acidity	2	mol H+/t	8.0	5.0	2.0	9.0	
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02	
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	< 0.005	0.059	
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	< 3	37	
Sulfur - KCI Extractable	0.02	% S	n/a	n/a	n/a	n/a	
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a	
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a	
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a	
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a	
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	n/a	n/a	
Acid Neutralising Capacity - acidity (ANCbt)	2	mol H+/t	n/a	n/a	n/a	n/a	
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/a	n/a	n/a	
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5	
Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	< 0.02	0.07	
Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	< 10	46	
Liming Rate ^{S01}	1	kg CaCO3/t	1.0	< 1	< 1	3.0	
Extraneous Material							
<2mm Fraction	0.005	g	n/a	n/a	n/a	n/a	
>2mm Fraction	0.005	g	n/a	n/a	n/a	n/a	
Analysed Material	0.1	%	100	100	100	100	
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1	
O/ Maintura	0.4	0/	40	2.4	2.5	0.0	
% Moisture	0.1	%	13	2.1	2.5	9.6	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium Suite			
Chromium Suite	Brisbane	Nov 03, 2015	6 Week
- Method: LTM-GEN-7070			
Extraneous Material	Brisbane	Nov 03, 2015	6 Week
- Method: LTM-GEN-7050/7070			
% Moisture	Brisbane	Nov 03, 2015	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Eurofins | mgt Client Manager: Natalie Krasselt Nov 3, 2015 9:00 AM Nov 10, 2015 5 Day -ALL :-SRA/Results Received: Due: Priority: Contact Name: 480 S00 002 880 521 Telephone: +61 \$390£ \$400 Facsimile: +61 \$3902 46 Date Reported:Nov 06, 2015 Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172 477984 08 6272 0200 08 9285 8444 Order No.: Report #: Phone: Fax: × × × × × × × × \times × Moisture Set × Chromium Suite B15-No01346 B15-No01348 B15-No01349 B15-No01353 B15-No01354 B15-No01347 B15-No01350 B15-No01352 B15-No01351 LAB ID Matrix Soil Soil Soil Soil Soil urne Laboratory - NATA Site # 1254 & 14271 ABN GROUP BALDIVIS Sample Detail Sampling Time Galt Environment P/L boratory where analysis is conducted alboratory where analysis is conducted alboratory - NATA Site # 1254 & Carlot Alboratory - NATA Site # 18217 isbane Laboratory - NATA Site # 20794 ine Laboratory - NATA Site # 20794 2/39 Flynn St Wembley WA 6014 11501236 Sample Date Oct 23, 2015 al Laboratory Agenta Pany Name:

Agenta Pany Name:

Project Name: terral Labora .75 3 ιÖ 0 ıÖ. 0 5 Melboume 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA# 1261 Site # 1254 & 14271 102/ 102/ 103/ 106/ 108/ 109/ 111/ e.mail : EnviroSales@eurofins.com.au ngt

eurofins 🛟

Eurofins | mgt Client Manager: Natalie Krasselt Nov 3, 2015 9:00 AM Nov 10, 2015 5 Day -ALL :-SRA/Results Received: Due: Priority: Contact Name: 480 S00 002 880 521 Telephone: +61 \$390£ \$400 Facsimile: +61 \$3902 46 Date Reported:Nov 06, 2015 Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172 477984 08 6272 0200 08 9285 8444 Order No.: Report #: Phone: Fax: × × × × × × × × Moisture Set Chromium Suite B15-No01356 B15-No01359 B15-No01363 B15-No01364 B15-No01358 B15-No01360 B15-No01362 B15-No01355 B15-No01357 B15-No01361 Soil Soil Soil Soil Soil Soil Soil Soil urne Laboratory - NATA Site # 1254 & 14271 ABN GROUP BALDIVIS Sample Detail Galt Environment P/L ine Laboratory - NATA Site # 20794 tory where analysis is conducted albourne Laboratory - NATA Site #125 officy Laboratory - NATA Site # 18217 isbane Laboratory - NATA Site # 2079 2/39 Flynn St Wembley WA 6014 11501236 Oct 23, 2015 ternal Laboratory Age pany Name:
Age pany Name:
Age pany Name:
Propert Name:
Project ID: 1.75 .25).25 .25 416/D.0 0 Ŋ. 0 0 mgt 112/ Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 118/ 120/ 120/ 122/ 123/ 124/ **8**005 085 521 e.mail : EnviroSales@eurofins.com.au

eurofins 🛟

Eurofins | mgt Client Manager: Natalie Krasselt Nov 3, 2015 9:00 AM Nov 10, 2015 5 Day -ALL :-SRA/Results Received: Due: Priority: Contact Name: 48N : 50 005 885 521 Telephone: +61 7 3904 4600 Facsimile: +61 7 3902 464 Date Reported:Nov 06, 2015 Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172 477984 08 6272 0200 08 9285 8444 Order No.: Report #: Phone: Fax: × Moisture Set × Chromium Suite B15-No01365 Soil urne Laboratory - NATA Site # 1254 & 14271 ABN GROUP BALDIVIS J1501236 Sample Detail Galt Environment P/L 2/39 Flynn St Wembley WA 6014 boratory where analysis is conducted alboratory where analysis is conducted alboratory - NATA Site # 1254 & Carlot Alboratory - NATA Site # 18217 isbane Laboratory - NATA Site # 20794 ne Laboratory - NATA Site # 20794 atory where analysis is conducted Oct 23, 2015 terral Laboratory Age pany Name:
Age pany Name:
Age pany Name:
Propert Name:
Project ID: e.mail : EnviroSales@eurofins.com.au

eurofins 🛟

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the resu

Duplicate

A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Chromium Suite									
Chromium Reducible Sulfur			%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					, ,				
Chromium Suite				Result 1	Result 2	RPD			
pH-KCL	B15-No01346	CP	pH Units	5.8	5.8	1.0	30%	Pass	
Acid trail - Titratable Actual Acidity	B15-No01346	CP	mol H+/t	6.0	6.0	5.0	30%	Pass	
sulfidic - TAA equiv. S% pyrite	B15-No01346	CP	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
Chromium Reducible Sulfur	B15-No01346	CP	% S	< 0.005	< 0.005	<1	30%	Pass	
Chromium Reducible Sulfur -acidity units	B15-No01346	СР	mol H+/t	< 3	< 3	<1	30%	Pass	
Sulfur - KCl Extractable	B15-No01346	CP	% S	n/a	n/a	n/a	30%	Pass	
HCI Extractable Sulfur	B15-No01346	CP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur	B15-No01346	CP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - acidity units	B15-No01346	СР	mol H+/t	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	B15-No01346	СР	% S	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity (ANCbt)	B15-No01346	СР	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt)	B15-No01346	СР	% S	n/a	n/a	n/a	30%	Pass	
ANC Fineness Factor	B15-No01346	СР	factor	1.5	1.5	<1	30%	Pass	
Net Acidity (Sulfur Units)	B15-No01346	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
Net Acidity (Acidity Units)	B15-No01346	СР	mol H+/t	< 10	< 10	<1	30%	Pass	
Liming Rate	B15-No01346	СР	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	B15-No01346	CP	%	3.1	3.2	5.0	30%	Pass	
Duplicate									
Chromium Suite				Result 1	Result 2	RPD			
pH-KCL	B15-No01356	CP	pH Units	4.8	4.8	<1	30%	Pass	
Acid trail - Titratable Actual Acidity	B15-No01356	CP	mol H+/t	26	25	3.0	30%	Pass	
sulfidic - TAA equiv. S% pyrite	B15-No01356	CP	% pyrite S	0.04	0.04	3.0	30%	Pass	
Chromium Reducible Sulfur	B15-No01356	CP	% S	< 0.005	< 0.005	<1	30%	Pass	
Chromium Reducible Sulfur -acidity units	B15-No01356	СР	mol H+/t	< 3	< 3	<1	30%	Pass	
Sulfur - KCl Extractable	B15-No01356	CP	% S	n/a	n/a	n/a	30%	Pass	
HCI Extractable Sulfur	B15-No01356	CP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur	B15-No01356	CP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - acidity units	B15-No01356	СР	mol H+/t	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	B15-No01356	СР	% S	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity (ANCbt)	B15-No01356	CP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt)	B15-No01356	СР	% S	n/a	n/a	n/a	30%	Pass	
ANC Fineness Factor	B15-No01356	CP	factor	1.5	1.5	<1	30%	Pass	
Net Acidity (Sulfur Units)	B15-No01356	CP	% S	0.04	0.04	n/a	30%	Pass	
Net Acidity (Acidity Units)	B15-No01356	CP	mol H+/t	26	25	n/a	30%	Pass	
Liming Rate	B15-No01356	CP	kg CaCO3/t	2.0	2.0	3.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	B15-No01356	СР	%	24	26	6.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'

S01

S02 Retained Acidity is Reported when the pHKCl is less than pH $4.5\,$

S03 Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period S04

Authorised By

Natalie Krasselt Analytical Services Manager Bryan Wilson Senior Analyst-Metal (QLD) Richard Corner Senior Analyst-Inorganic (QLD)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix G: Understanding Your Report

UNDERSTANDING YOUR REPORT

GALT FORM PMP11 Rev2

1. EXPECTATIONS OF THE REPORT

This document has been prepared to clarify what is and is not provided in your report. It is intended to inform you of what your realistic expectations of this report should be and how to manage your risks associated with the conditions on site.

Geotechnical engineering and environmental science are less exact than other engineering and scientific disciplines. We include this information to help you understand where our responsibilities begin and end. You should read and understand this information. Please contact us if you do not understand the report or this explanation. We have extensive experience in a wide variety of projects and we can help you to manage your risk.

2. THIS REPORT RELATES TO PROJECT-SPECIFIC CONDITIONS

This report was developed for a unique set of project-specific conditions to meet the needs of the nominated client. It took into account the following:

- the project objectives as we understood them and as described in this report;
- the specific site mentioned in this report; and
- the current and proposed development at the site.

It should not be used for any purpose other than that indicated in the report. You should not rely on this report if any of the following conditions apply:

- the report was not written for you;
- the report was not written for the site specific to your development;
- the report was not written for your project (including a development at the correct site but other than that listed in the report); or
- the report was written before significant changes occurred at the site (such as a development or a change in ground conditions).

You should always inform us of changes in the proposed project (including minor changes) and request an assessment of their impact.

Where we are not informed of developments relevant to your report, we cannot be held responsible or liable for problems that may arise as a consequence.

Where design is to be carried out by others using information provided by us, we recommend that we be involved in the design process by being engaged for consultation with other members of the project team. Furthermore, we recommend that we be able to review work produced by other members of the project team that relies on information provided in our report.

SOIL LOGS

Our reports often include logs of intrusive and non-intrusive investigation techniques. These logs are based on our interpretation of field data and laboratory results. The logs should only be read in conjunction with the report they were issued with and should not be re-drawn for inclusion in other documents not prepared by us.

4. THIRD PARTY RELIANCE

We have prepared this report for use by the client. This report must be regarded as confidential to the client and the client's professional advisors. We do not accept any responsibility for contents of this document from any party other than the nominated client. We take no responsibility for any damages suffered by a third party because of any decisions or actions they may make based on this report. Any reliance or decisions made by a third party based on this report are the responsibility of the third party and not of us.

5. CHANGE IN SUBSURFACE CONDITIONS

The recommendations in this report are based on the ground conditions that existed at the time when the study was undertaken. Changes in ground conditions can occur in numerous ways including anthropogenic events (such as construction or contaminating activities on or adjacent to the site) or natural events (such as floods, groundwater fluctuations or earthquakes). We should be consulted prior to use of this report so that we can comment on its reliability. It is important to note that where ground conditions have changed, additional sampling, testing or analysis may be required to fully assess the changed conditions.

6. SUBSURFACE CONDITIONS DURING CONSTRUCTION

Practical constraints mean that we cannot know every minute detail about the subsurface conditions at a particular site. We use professional judgement to form an opinion about the subsurface conditions at the site. Some variation to our evaluated conditions is likely and significant variation is possible. Accordingly, our report should not be considered as final as it is developed from professional judgement and opinion.

The most effective means of dealing with unanticipated ground conditions is to engage us for construction support. We can only finalise our recommendations by observing actual subsurface conditions encountered during construction. We cannot accept liability for a report's recommendations if we cannot observe construction.

7. ENVIRONMENTAL AND GEOTECHNICAL ISSUES

Unless specifically mentioned otherwise in our report, environmental considerations are not addressed in geotechnical reports. Similarly, geotechnical issues are not addressed in environmental reports. The investigation techniques used for geotechnical investigations can differ from those used for environmental investigations. It is the client's responsibility to satisfy themselves that geotechnical and environmental considerations have been taken into account for the site.

O:\Administration\Standard Forms and Documents\PMP11-Rev2 Understanding your Report.docx

430 Roberts Road SUBIACO WA 6008 PO Box 2150 SUBIACO WA 6904

Tel: (08) 9382 5111 admin@pfeng.com.au

www.pfeng.com.au

Suite 4 2A MacPherson Street BROOME WA 6725 PO Box 3634 BROOME WA 6725

Tel: (08) 9192 8015 broome@pfeng.com.au Suite 5 25 Parap Road PARAP NT 0820 PO Box 104 PARAP NT 0804

Tel: (08) 7999 8811 nt@pfeng.com.au

